↓ Skip to main content

Modulation of specific inhibitory networks in fatigued locomotor muscles of healthy males

Overview of attention for article published in Experimental Brain Research, December 2017
Altmetric Badge

About this Attention Score

  • In the top 25% of all research outputs scored by Altmetric
  • High Attention Score compared to outputs of the same age (87th percentile)
  • High Attention Score compared to outputs of the same age and source (90th percentile)

Mentioned by

twitter
23 X users

Citations

dimensions_citation
44 Dimensions

Readers on

mendeley
80 Mendeley
Title
Modulation of specific inhibitory networks in fatigued locomotor muscles of healthy males
Published in
Experimental Brain Research, December 2017
DOI 10.1007/s00221-017-5142-x
Pubmed ID
Authors

Stuart Goodall, Glyn Howatson, Kevin Thomas

Abstract

Reduced maximal force capability of skeletal muscle, as a consequence of exercise, can be due to peripheral or central fatigue mechanisms. In upper-limb muscles, neuromuscular fatigue is concurrent with reduced corticospinal excitability and increased inhibition (lengthened corticospinal silent period [CSP]; reduced short-interval intracortical inhibition [SICI] ratio). However, it is unclear whether these adjustments occur in response to fatiguing exercise of locomotor muscles. This study examined the effect of fatiguing, maximal, knee-extensor exercise on motor cortical excitability and inhibition. Thirteen males performed three 30-s maximal, isometric contractions with the dominant knee-extensors (MVC1, MVC2 and MVC3), separated by 60 s. At the end of, and between each MVC, neuromuscular fatigue, corticospinal excitability, CSP and SICI were assessed with supramaximal stimulation of the femoral nerve, and motor cortical stimulation, respectively. Repeated MVCs caused progressive reductions in MVC (- 10, - 24 and - 29%, respectively, P ≤ 0.01), along with significant peripheral (reductions in potentiated twitch of - 23, -53 and - 60%, respectively, P < 0.001) and central (reductions in VA of - 10% and - 13% post-MVC2 and 3, respectively, P ≤ 0.01) fatigue. Following MVC1 corticospinal excitability was reduced, and remained depressed thereafter. CSP increased in duration and remained longer throughout the protocol; whereas, no change in SICI was observed. Repeated, sustained, maximal contractions of the knee-extensors elicited substantial peripheral and central fatigue that was accompanied by a concomitant reduction in corticospinal excitability. However, divergent responses exist between inhibitory networks within the motor cortex, the activity of inhibitory networks mediated by GABAB are increased, whereas those mediated by GABAA are not.

X Demographics

X Demographics

The data shown below were collected from the profiles of 23 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 80 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 80 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 13 16%
Student > Master 13 16%
Student > Bachelor 6 8%
Researcher 5 6%
Other 4 5%
Other 13 16%
Unknown 26 33%
Readers by discipline Count As %
Sports and Recreations 12 15%
Neuroscience 11 14%
Medicine and Dentistry 10 13%
Nursing and Health Professions 8 10%
Psychology 5 6%
Other 5 6%
Unknown 29 36%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 13. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 09 December 2017.
All research outputs
#2,752,840
of 25,712,965 outputs
Outputs from Experimental Brain Research
#182
of 3,412 outputs
Outputs of similar age
#58,027
of 448,215 outputs
Outputs of similar age from Experimental Brain Research
#4
of 43 outputs
Altmetric has tracked 25,712,965 research outputs across all sources so far. Compared to these this one has done well and is in the 89th percentile: it's in the top 25% of all research outputs ever tracked by Altmetric.
So far Altmetric has tracked 3,412 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 5.5. This one has done particularly well, scoring higher than 94% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 448,215 tracked outputs that were published within six weeks on either side of this one in any source. This one has done well, scoring higher than 87% of its contemporaries.
We're also able to compare this research output to 43 others from the same source and published within six weeks on either side of this one. This one has done particularly well, scoring higher than 90% of its contemporaries.