↓ Skip to main content

Effect of Testosterone on TRPV1 Expression in a Model of Orofacial Myositis Pain in the Rat

Overview of attention for article published in Journal of Molecular Neuroscience, December 2017
Altmetric Badge

Mentioned by

twitter
1 X user

Citations

dimensions_citation
23 Dimensions

Readers on

mendeley
23 Mendeley
Title
Effect of Testosterone on TRPV1 Expression in a Model of Orofacial Myositis Pain in the Rat
Published in
Journal of Molecular Neuroscience, December 2017
DOI 10.1007/s12031-017-1009-7
Pubmed ID
Authors

Xiaofeng Bai, Xia Zhang, Qing Zhou

Abstract

Recent clinical studies have revealed sex differences in response to transient receptor potential vanilloid 1 (TRPV1) agonist-induced pain. However, the mechanism of these differences in TRPV1-related chronic pain remains unclear. In the present study, we investigate the effects of inflammation and gonadal hormones on TRPV1 expression in trigeminal ganglia. Inflammatory pain was modeled by injecting complete Freund's adjuvant (CFA) into the left masseter muscle in rats. TRPV1 mRNA and protein levels in the trigeminal ganglia of male and female rats following CFA injection were assessed. CFA-induced changes in TRPV1 mRNA and protein expression in the trigeminal ganglia from orchidectomized (ODX) male rats and testosterone-replaced ODX rats were examined. Additionally, TRPV1 mRNA levels in the trigeminal ganglia from ovariectomized (OVX) female and ODX male rats treated with tamoxifen were assessed. We found that the levels of TRPV1 mRNA and protein in the trigeminal ganglia from female rats following CFA injection were significantly higher than in the ganglia from naïve female rats. CFA-induced inflammatory hyperalgesia did not alter TRPV1 expression in the trigeminal ganglia from male rats. The TRPV1 mRNA and protein expression levels in the ODX male trigeminal ganglia were significantly upregulated on day 3 following the initiation of inflammation. However, CFA-induced inflammatory pain had no significant effect on TRPV1 mRNA or protein expression in testosterone-replaced ODX rats. Furthermore, tamoxifen was unable to inhibit the upregulation of TRPV1 expression in OVX female and ODX male rats after CFA injection. In summary, these data indicate that gender differences in TRPV1 function may be, in part, mediated by sex-dependent TRPV1 expression in sensory ganglia. Testosterone plays a key role in the inhibition of TRPV1 expression in this rat chronic inflammatory pain model.

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 23 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 23 100%

Demographic breakdown

Readers by professional status Count As %
Student > Bachelor 4 17%
Student > Doctoral Student 4 17%
Researcher 3 13%
Student > Master 3 13%
Student > Ph. D. Student 2 9%
Other 4 17%
Unknown 3 13%
Readers by discipline Count As %
Neuroscience 7 30%
Medicine and Dentistry 7 30%
Pharmacology, Toxicology and Pharmaceutical Science 2 9%
Biochemistry, Genetics and Molecular Biology 1 4%
Chemical Engineering 1 4%
Other 1 4%
Unknown 4 17%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 07 December 2017.
All research outputs
#22,764,772
of 25,382,440 outputs
Outputs from Journal of Molecular Neuroscience
#1,330
of 1,643 outputs
Outputs of similar age
#385,399
of 445,833 outputs
Outputs of similar age from Journal of Molecular Neuroscience
#21
of 30 outputs
Altmetric has tracked 25,382,440 research outputs across all sources so far. This one is in the 1st percentile – i.e., 1% of other outputs scored the same or lower than it.
So far Altmetric has tracked 1,643 research outputs from this source. They receive a mean Attention Score of 3.9. This one is in the 1st percentile – i.e., 1% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 445,833 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 30 others from the same source and published within six weeks on either side of this one. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.