↓ Skip to main content

Efferents of anterior cingulate areas 24a and 24b and midcingulate areas 24aʹ and 24bʹ in the mouse

Overview of attention for article published in Brain Structure and Function, December 2017
Altmetric Badge

Mentioned by

twitter
1 X user

Citations

dimensions_citation
76 Dimensions

Readers on

mendeley
104 Mendeley
Title
Efferents of anterior cingulate areas 24a and 24b and midcingulate areas 24aʹ and 24bʹ in the mouse
Published in
Brain Structure and Function, December 2017
DOI 10.1007/s00429-017-1585-x
Pubmed ID
Authors

Clémentine Fillinger, Ipek Yalcin, Michel Barrot, Pierre Veinante

Abstract

The anterior cingulate cortex (ACC), constituted by areas 25, 32, 24a and 24b in rodents, plays a major role in cognition, emotion and pain. In a previous study, we described the afferents of areas 24a and 24b and those of areas 24a' and 24b' of midcingulate cortex (MCC) in mice and highlighted some density differences among cingulate inputs (Fillinger et al., Brain Struct Funct 222:1509-1532, 2017). To complete this connectome, we analyzed here the efferents of ACC and MCC by injecting anterograde tracers in areas 24a/24b of ACC and 24a'/24b' of MCC. Our results reveal a common projections pattern from both ACC and MCC, targeting the cortical mantle (intracingulate, retrosplenial and parietal associative cortex), the non-cortical basal forebrain, (dorsal striatum, septum, claustrum, basolateral amygdala), the hypothalamus (anterior, lateral, posterior), the thalamus (anterior, laterodorsal, ventral, mediodorsal, midline and intralaminar nuclei), the brainstem (periaqueductal gray, superior colliculus, pontomesencephalic reticular formation, pontine nuclei, tegmental nuclei) and the spinal cord. In addition to an overall denser ACC projection pattern compared to MCC, our analysis revealed clear differences in the density and topography of efferents between ACC and MCC, as well as between dorsal (24b/24b') and ventral (24a/24a') areas, suggesting a common functionality of these two cingulate regions supplemented by specific roles of each area. These results provide a detailed analysis of the efferents of the mouse areas 24a/24b and 24a'/24b' and achieve the description of the cingulate connectome, which bring the anatomical basis necessary to address the roles of ACC and MCC in mice.

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 104 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 104 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 20 19%
Researcher 18 17%
Student > Master 16 15%
Student > Doctoral Student 9 9%
Student > Bachelor 8 8%
Other 11 11%
Unknown 22 21%
Readers by discipline Count As %
Neuroscience 46 44%
Agricultural and Biological Sciences 11 11%
Psychology 9 9%
Engineering 3 3%
Biochemistry, Genetics and Molecular Biology 2 2%
Other 7 7%
Unknown 26 25%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 07 December 2017.
All research outputs
#21,697,638
of 24,217,893 outputs
Outputs from Brain Structure and Function
#1,524
of 1,725 outputs
Outputs of similar age
#383,177
of 447,703 outputs
Outputs of similar age from Brain Structure and Function
#39
of 55 outputs
Altmetric has tracked 24,217,893 research outputs across all sources so far. This one is in the 1st percentile – i.e., 1% of other outputs scored the same or lower than it.
So far Altmetric has tracked 1,725 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 7.0. This one is in the 1st percentile – i.e., 1% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 447,703 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 55 others from the same source and published within six weeks on either side of this one. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.