↓ Skip to main content

Metabolic Network Reconstruction and Modeling

Overview of attention for book
Cover of 'Metabolic Network Reconstruction and Modeling'

Table of Contents

  1. Altmetric Badge
    Book Overview
  2. Altmetric Badge
    Chapter 1 Reconstructing High-Quality Large-Scale Metabolic Models with merlin
  3. Altmetric Badge
    Chapter 2 Analyzing and Designing Cell Factories with OptFlux
  4. Altmetric Badge
    Chapter 3 The MONGOOSE Rational Arithmetic Toolbox
  5. Altmetric Badge
    Chapter 4 The FASTCORE Family: For the Fast Reconstruction of Compact Context-Specific Metabolic Networks Models
  6. Altmetric Badge
    Chapter 5 Reconstruction and Analysis of Central Metabolism in Microbes
  7. Altmetric Badge
    Chapter 6 Using PSAMM for the Curation and Analysis of Genome-Scale Metabolic Models
  8. Altmetric Badge
    Chapter 7 Integration of Comparative Genomics with Genome-Scale Metabolic Modeling to Investigate Strain-Specific Phenotypical Differences
  9. Altmetric Badge
    Chapter 8 Template-Assisted Metabolic Reconstruction and Assembly of Hybrid Bacterial Models
  10. Altmetric Badge
    Chapter 9 Integrated Host-Pathogen Metabolic Reconstructions
  11. Altmetric Badge
    Chapter 10 Metabolic Model Reconstruction and Analysis of an Artificial Microbial Ecosystem
  12. Altmetric Badge
    Chapter 11 RNA Sequencing and Analysis in Microorganisms for Metabolic Network Reconstruction
  13. Altmetric Badge
    Chapter 12 Differential Proteomics Based on 2D-Difference In-Gel Electrophoresis and Tandem Mass Spectrometry for the Elucidation of Biological Processes in Antibiotic-Producer Bacterial Strains
  14. Altmetric Badge
    Chapter 13 Techniques for Large-Scale Bacterial Genome Manipulation and Characterization of the Mutants with Respect to In Silico Metabolic Reconstructions
  15. Altmetric Badge
    Chapter 14 Computational Prediction of Synthetic Lethals in Genome-Scale Metabolic Models Using Fast-SL
  16. Altmetric Badge
    Chapter 15 Coupling Fluxes, Enzymes, and Regulation in Genome-Scale Metabolic Models
  17. Altmetric Badge
    Chapter 16 Dynamic Flux Balance Analysis Using DFBAlab
  18. Altmetric Badge
    Chapter 17 Designing Optimized Production Hosts by Metabolic Modeling
  19. Altmetric Badge
    Chapter 18 Optimization of Multi-Omic Genome-Scale Models: Methodologies, Hands-on Tutorial, and Perspectives
Attention for Chapter 10: Metabolic Model Reconstruction and Analysis of an Artificial Microbial Ecosystem
Altmetric Badge

About this Attention Score

  • Good Attention Score compared to outputs of the same age (71st percentile)
  • High Attention Score compared to outputs of the same age and source (88th percentile)

Mentioned by

twitter
10 X users

Citations

dimensions_citation
4 Dimensions

Readers on

mendeley
19 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Chapter title
Metabolic Model Reconstruction and Analysis of an Artificial Microbial Ecosystem
Chapter number 10
Book title
Metabolic Network Reconstruction and Modeling
Published in
Methods in molecular biology, January 2018
DOI 10.1007/978-1-4939-7528-0_10
Pubmed ID
Book ISBNs
978-1-4939-7527-3, 978-1-4939-7528-0
Authors

Chao Ye, Nan Xu, Xiulai Chen, Liming Liu

Abstract

Microbial communities are widespread in the environment, and to isolate and identify species or to determine relations among microorganisms, some 'omics methods like metagenomics, proteomics, and metabolomics have been used. When combined with various 'omics data, models known as artificial microbial ecosystems (AME) are powerful methods that can make functional predictions about microbial communities. Reconstruction of an AME model is the first step for model analysis. Many techniques have been applied to the construction of AME models, e.g., the compartmentalization approach, community objectives method, and dynamic analysis approach. Of these approaches, species compartmentalization is the most relevant to genetics. Besides, some algorithms have been developed for the analysis of AME models. In this chapter, we present a general protocol for the use of the species compartmentalization method to reconstruct a model of microbial communities. Then, the analysis of an AME is discussed.

X Demographics

X Demographics

The data shown below were collected from the profiles of 10 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 19 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 19 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 5 26%
Researcher 3 16%
Lecturer 2 11%
Student > Master 2 11%
Student > Bachelor 1 5%
Other 3 16%
Unknown 3 16%
Readers by discipline Count As %
Agricultural and Biological Sciences 6 32%
Environmental Science 3 16%
Immunology and Microbiology 2 11%
Biochemistry, Genetics and Molecular Biology 2 11%
Unspecified 1 5%
Other 2 11%
Unknown 3 16%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 5. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 17 July 2018.
All research outputs
#6,752,113
of 24,885,505 outputs
Outputs from Methods in molecular biology
#1,995
of 13,981 outputs
Outputs of similar age
#126,738
of 454,089 outputs
Outputs of similar age from Methods in molecular biology
#166
of 1,485 outputs
Altmetric has tracked 24,885,505 research outputs across all sources so far. This one has received more attention than most of these and is in the 72nd percentile.
So far Altmetric has tracked 13,981 research outputs from this source. They receive a mean Attention Score of 3.5. This one has done well, scoring higher than 85% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 454,089 tracked outputs that were published within six weeks on either side of this one in any source. This one has gotten more attention than average, scoring higher than 71% of its contemporaries.
We're also able to compare this research output to 1,485 others from the same source and published within six weeks on either side of this one. This one has done well, scoring higher than 88% of its contemporaries.