↓ Skip to main content

Krüppel-like Factor 5, Increased in Pancreatic Ductal Adenocarcinoma, Promotes Proliferation, Acinar-to-Ductal Metaplasia, Pancreatic Intraepithelial Neoplasia, and Tumor Growth in Mice

Overview of attention for article published in Gastroenterology, December 2017
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age
  • Average Attention Score compared to outputs of the same age and source

Mentioned by

twitter
2 X users
facebook
1 Facebook page

Citations

dimensions_citation
66 Dimensions

Readers on

mendeley
72 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Krüppel-like Factor 5, Increased in Pancreatic Ductal Adenocarcinoma, Promotes Proliferation, Acinar-to-Ductal Metaplasia, Pancreatic Intraepithelial Neoplasia, and Tumor Growth in Mice
Published in
Gastroenterology, December 2017
DOI 10.1053/j.gastro.2017.12.005
Pubmed ID
Authors

Ping He, Jong Won Yang, Vincent W. Yang, Agnieszka B. Bialkowska

Abstract

Activating mutations in KRAS are detected in most pancreatic ductal adenocarcinomas (PDACs). Expression of an activated form of KRAS (KrasG12D) in pancreata of mice is sufficient to induce formation of pancreatic intraepithelial neoplasia (PanINs)-a precursor of PDAC. Pancreatitis increases formation of PanINs in mice that express KrasG12D by promoting acinar to ductal metaplasia (ADM). We investigated the role of the transcription factor Krüppel-like factor 5 (KLF5) in ADM and KRAS-mediated formation of PanINs. We performed studies in adult mice with conditional disruption of Klf5 (Klf5fl/fl) and/or expression of KrasG12D (LSL-KrasG12D) via CreERTM recombinase regulated by an acinar cell-specific promoter (Ptf1a). Activation of KrasG12D and loss of KLF5 was achieved by administration of tamoxifen. Pancreatitis was induced in mice by administration of cerulein; pancreatic tissues were collected, analyzed by histology and immunohistochemistry, and transcriptomes were compared between mice that did or did not express KLF5. We performed immunohistochemical analyses of human tissue microarrays, comparing levels of KLF5 among 96 human samples of PDAC. UN-KC-6141 cells (pancreatic cancer cells derived from Pdx1-Cre;LSL-KrasG12D mice) were incubated with inhibitors of different kinases and analyzed in proliferation assays and by immunoblots. Expression of KLF5 was knocked down with small hairpin RNAs or CRISPR/Cas9 strategies; cells were analyzed in proliferation and gene expression assays, compared to cells expressing control vectors. Cells were subcutaneously injected into flanks of syngeneic mice and tumor growth was assessed. Of the 96 PDAC samples analyzed, 73% were positive for KLF5 (defined as nuclear staining in more than 5% of tumor cells). Pancreata from Ptf1a-CreERTM;LSL-KrasG12D mice contained ADM and PanIN lesions, which contained high levels of nuclear KLF5 within these structures. In contrast, Ptf1a-CreERTM;LSL-KrasG12D;Klf5fl/fl mice formed fewer PanINs. After cerulein administration, Ptf1a-CreERTM;LSL-KrasG12D mice formed more extensive ADM than Ptf1a-CreERTM;LSL-KrasG12D;Klf5fl/fl mice. Pancreata from Ptf1a-CreERTM;LSL-KrasG12D;Klf5fl/fl mice had increased expression of the tumor suppressor NDRG2 and reduced phosphorylation (activation) of STAT3, compared to Ptf1a-CreERTM;LSL-KrasG12D mice. In UN-KC-6141 cells, PI3K and MEK signaling increased expression of KLF5; a high level of KLF5 increased proliferation. Cells with knockdown of Klf5 had reduced proliferation, compared to control cells, had reduced expression of ductal markers, and formed smaller tumors (71.61 mm3 ± 30.79 mm3 vs 121.44 mm3 ± 34.90 mm3 from control cells) in flanks of mice. Levels of KLF5 are increased in human PDAC samples and in PanINs of Ptf1a-CreERTM;LSL-KrasG12D mice, compared to controls. KLF5 disruption increases expression of NDRG2 and reduces activation of STAT3 and reduces ADM and PanINs formation in mice. Strategies to reduce KLF5 activity might reduce progression of acinar cells from ADM to PanIN and pancreatic tumorigenesis.

X Demographics

X Demographics

The data shown below were collected from the profiles of 2 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 72 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 72 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 10 14%
Student > Bachelor 6 8%
Researcher 6 8%
Student > Doctoral Student 5 7%
Other 4 6%
Other 9 13%
Unknown 32 44%
Readers by discipline Count As %
Biochemistry, Genetics and Molecular Biology 14 19%
Medicine and Dentistry 13 18%
Agricultural and Biological Sciences 6 8%
Immunology and Microbiology 2 3%
Pharmacology, Toxicology and Pharmaceutical Science 1 1%
Other 3 4%
Unknown 33 46%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 2. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 05 January 2018.
All research outputs
#16,725,651
of 25,382,440 outputs
Outputs from Gastroenterology
#9,860
of 12,316 outputs
Outputs of similar age
#266,332
of 444,243 outputs
Outputs of similar age from Gastroenterology
#93
of 163 outputs
Altmetric has tracked 25,382,440 research outputs across all sources so far. This one is in the 32nd percentile – i.e., 32% of other outputs scored the same or lower than it.
So far Altmetric has tracked 12,316 research outputs from this source. They typically receive a lot more attention than average, with a mean Attention Score of 15.8. This one is in the 18th percentile – i.e., 18% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 444,243 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 37th percentile – i.e., 37% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 163 others from the same source and published within six weeks on either side of this one. This one is in the 39th percentile – i.e., 39% of its contemporaries scored the same or lower than it.