↓ Skip to main content

Multi-model-based interactive authoring environment for creating shareable medical knowledge

Overview of attention for article published in Computer Methods & Programs in Biomedicine, July 2017
Altmetric Badge

Mentioned by

facebook
1 Facebook page

Citations

dimensions_citation
14 Dimensions

Readers on

mendeley
84 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Multi-model-based interactive authoring environment for creating shareable medical knowledge
Published in
Computer Methods & Programs in Biomedicine, July 2017
DOI 10.1016/j.cmpb.2017.07.010
Pubmed ID
Authors

Taqdir Ali, Maqbool Hussain, Wajahat Ali Khan, Muhammad Afzal, Jamil Hussain, Rahman Ali, Waseem Hassan, Arif Jamshed, Byeong Ho Kang, Sungyoung Lee

Abstract

Technologically integrated healthcare environments can be realized if physicians are encouraged to use smart systems for the creation and sharing of knowledge used in clinical decision support systems (CDSS). While CDSSs are heading toward smart environments, they lack support for abstraction of technology-oriented knowledge from physicians. Therefore, abstraction in the form of a user-friendly and flexible authoring environment is required in order for physicians to create shareable and interoperable knowledge for CDSS workflows. Our proposed system provides a user-friendly authoring environment to create Arden Syntax MLM (Medical Logic Module) as shareable knowledge rules for intelligent decision-making by CDSS. Existing systems are not physician friendly and lack interoperability and shareability of knowledge. In this paper, we proposed Intelligent-Knowledge Authoring Tool (I-KAT), a knowledge authoring environment that overcomes the above mentioned limitations. Shareability is achieved by creating a knowledge base from MLMs using Arden Syntax. Interoperability is enhanced using standard data models and terminologies. However, creation of shareable and interoperable knowledge using Arden Syntax without abstraction increases complexity, which ultimately makes it difficult for physicians to use the authoring environment. Therefore, physician friendliness is provided by abstraction at the application layer to reduce complexity. This abstraction is regulated by mappings created between legacy system concepts, which are modeled as domain clinical model (DCM) and decision support standards such as virtual medical record (vMR) and Systematized Nomenclature of Medicine - Clinical Terms (SNOMED CT). We represent these mappings with a semantic reconciliation model (SRM). The objective of the study is the creation of shareable and interoperable knowledge using a user-friendly and flexible I-KAT. Therefore we evaluated our system using completeness and user satisfaction criteria, which we assessed through the system- and user-centric evaluation processes. For system-centric evaluation, we compared the implementation of clinical information modelling system requirements in our proposed system and in existing systems. The results suggested that 82.05% of the requirements were fully supported, 7.69% were partially supported, and 10.25% were not supported by our system. In the existing systems, 35.89% of requirements were fully supported, 28.20% were partially supported, and 35.89% were not supported. For user-centric evaluation, the assessment criterion was 'ease of use'. Our proposed system showed 15 times better results with respect to MLM creation time than the existing systems. Moreover, on average, the participants made only one error in MLM creation using our proposed system, but 13 errors per MLM using the existing systems. We provide a user-friendly authoring environment for creation of shareable and interoperable knowledge for CDSS to overcome knowledge acquisition complexity. The authoring environment uses state-of-the-art decision support-related clinical standards with increased ease of use.

Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 84 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 84 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 18 21%
Student > Master 13 15%
Researcher 8 10%
Student > Doctoral Student 7 8%
Professor > Associate Professor 5 6%
Other 8 10%
Unknown 25 30%
Readers by discipline Count As %
Computer Science 17 20%
Medicine and Dentistry 12 14%
Social Sciences 5 6%
Business, Management and Accounting 4 5%
Nursing and Health Professions 4 5%
Other 11 13%
Unknown 31 37%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 12 December 2017.
All research outputs
#22,764,772
of 25,382,440 outputs
Outputs from Computer Methods & Programs in Biomedicine
#1,664
of 2,058 outputs
Outputs of similar age
#286,055
of 326,269 outputs
Outputs of similar age from Computer Methods & Programs in Biomedicine
#13
of 24 outputs
Altmetric has tracked 25,382,440 research outputs across all sources so far. This one is in the 1st percentile – i.e., 1% of other outputs scored the same or lower than it.
So far Altmetric has tracked 2,058 research outputs from this source. They receive a mean Attention Score of 3.3. This one is in the 1st percentile – i.e., 1% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 326,269 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 24 others from the same source and published within six weeks on either side of this one. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.