↓ Skip to main content

CCN5/WISP2 and metabolic diseases

Overview of attention for article published in Journal of Cell Communication and Signaling, December 2017
Altmetric Badge

Mentioned by

twitter
1 X user

Citations

dimensions_citation
25 Dimensions

Readers on

mendeley
30 Mendeley
Title
CCN5/WISP2 and metabolic diseases
Published in
Journal of Cell Communication and Signaling, December 2017
DOI 10.1007/s12079-017-0437-z
Pubmed ID
Authors

John R Grünberg, Johannes Elvin, Alexandra Paul, Shahram Hedjazifar, Ann Hammarstedt, Ulf Smith

Abstract

Obesity and type 2 diabetes increase worldwide at an epidemic rate. It is expected that by the year 2030 around 500 million people will have diabetes; predominantly type 2 diabetes. The CCN family of proteins has become of interest in both metabolic and other common human diseases because of their effects on mesenchymal stem cell (MSCs) proliferation and differentiation as well as being important regulators of fibrosis. We here review current knowledge of the WNT1 inducible signaling pathway protein 2 (CCN5/WISP2). It has been shown to be an important regulator of both these processes through effects on both the canonical WNT and the TGFβ pathways. It is also under normal regulation by the adipogenic commitment factor BMP4, in contrast to conventional canonical WNT ligands, and allows MSCs to undergo normal adipose cell differentiation. CCN5/WISP2 is highly expressed in, and secreted by, MSCs and is an important regulator of MSCs growth. In a transgenic mouse model overexpressing CCN5/WISP2 in the adipose tissue, we have shown that it is secreted and circulating in the blood, the mice develop hypercellular white and brown adipose tissue, have increased lean body mass and enlarged hypercellular hearts. Obese transgenic mice had improved insulin sensitivity. Interestingly, the anti-fibrotic effect of CCN5/WISP2 is protective against heart failure by inhibition of the TGFβ pathway. Understanding how CCN5/WISP2 is regulated and signals is important and may be useful for developing new treatment strategies in obesity and metabolic diseases and it can also be a target in regenerative medicine.

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 30 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 30 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 5 17%
Student > Bachelor 4 13%
Researcher 3 10%
Student > Master 3 10%
Student > Postgraduate 3 10%
Other 2 7%
Unknown 10 33%
Readers by discipline Count As %
Biochemistry, Genetics and Molecular Biology 11 37%
Medicine and Dentistry 3 10%
Pharmacology, Toxicology and Pharmaceutical Science 1 3%
Neuroscience 1 3%
Chemistry 1 3%
Other 1 3%
Unknown 12 40%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 19 December 2017.
All research outputs
#20,456,235
of 23,012,811 outputs
Outputs from Journal of Cell Communication and Signaling
#211
of 270 outputs
Outputs of similar age
#375,105
of 439,661 outputs
Outputs of similar age from Journal of Cell Communication and Signaling
#12
of 15 outputs
Altmetric has tracked 23,012,811 research outputs across all sources so far. This one is in the 1st percentile – i.e., 1% of other outputs scored the same or lower than it.
So far Altmetric has tracked 270 research outputs from this source. They receive a mean Attention Score of 2.8. This one is in the 1st percentile – i.e., 1% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 439,661 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 15 others from the same source and published within six weeks on either side of this one. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.