↓ Skip to main content

Effects of Zinc Supplementation During In Vitro Maturation on Meiotic Maturation of Oocytes and Developmental Capacity in Yak

Overview of attention for article published in Biological Trace Element Research, December 2017
Altmetric Badge

Mentioned by

twitter
1 X user

Citations

dimensions_citation
10 Dimensions

Readers on

mendeley
21 Mendeley
Title
Effects of Zinc Supplementation During In Vitro Maturation on Meiotic Maturation of Oocytes and Developmental Capacity in Yak
Published in
Biological Trace Element Research, December 2017
DOI 10.1007/s12011-017-1217-6
Pubmed ID
Authors

Xianrong Xiong, Daoliang Lan, Jian Li, Yaqiu Lin, Xiangdong Zi

Abstract

Zinc (Zn) is an essential trace element that is required during mammalian developmental processes. The objective of this study was to investigate the effects of Zn supplementation during in vitro maturation (IVM) on the developmental capacity of yak (Bos grunniens) oocytes. Cumulus expansion, nuclear maturation, intracellular glutathione (GSH), reactive oxygen species (ROS) levels, superoxide dismutase (SOD) activity, subsequent embryonic development, and the expression of Zn transporters (ZnTs) and Zrt and Irt-like proteins (ZiPs) were evaluated. The Zn concentrations in yak plasma and follicular fluid were 0.740 ± 0.012 and 0.382 ± 0.009 μg/mL, respectively. The cumulus expansion did not show significant differences in COCs after matured with or without Zn supplementation (P > 0.05). The intracellular GSH was higher in oocytes matured with 1 or 2 mg/L Zn than in control group (0 mg/L) (P < 0.05). However, ROS levels of oocytes matured with 1 or 2 mg/L Zn were reduced significantly compared with the control and 0.5 mg/L groups (P < 0.05). The SOD activity was increased significantly after Zn supplementation. The cleavage rate was not significantly different after Zn supplementation (P > 0.05). Percentages of matured oocytes that developed into the blastocyst stage after IVF were 47.9, 50.5, 60.4, and 58.9% for 0, 0.5, 1, and 2 mg/L Zn groups, respectively. Gene expression analysis revealed that the expression patterns associated with Zn were changed after Zn supplementation. In conclusion, Zn supplementation to IVM improved yak oocyte maturation and subsequent development by increasing GSH and SOD activity, decreasing ROS in oocytes.

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 21 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 21 100%

Demographic breakdown

Readers by professional status Count As %
Student > Bachelor 4 19%
Other 3 14%
Student > Ph. D. Student 3 14%
Lecturer 1 5%
Student > Doctoral Student 1 5%
Other 3 14%
Unknown 6 29%
Readers by discipline Count As %
Medicine and Dentistry 4 19%
Veterinary Science and Veterinary Medicine 2 10%
Biochemistry, Genetics and Molecular Biology 2 10%
Agricultural and Biological Sciences 2 10%
Computer Science 1 5%
Other 2 10%
Unknown 8 38%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 19 December 2017.
All research outputs
#20,456,235
of 23,012,811 outputs
Outputs from Biological Trace Element Research
#1,590
of 2,052 outputs
Outputs of similar age
#375,105
of 439,661 outputs
Outputs of similar age from Biological Trace Element Research
#15
of 20 outputs
Altmetric has tracked 23,012,811 research outputs across all sources so far. This one is in the 1st percentile – i.e., 1% of other outputs scored the same or lower than it.
So far Altmetric has tracked 2,052 research outputs from this source. They receive a mean Attention Score of 4.7. This one is in the 1st percentile – i.e., 1% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 439,661 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 20 others from the same source and published within six weeks on either side of this one. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.