↓ Skip to main content

Combination of carbon isotope ratio with hydrogen isotope ratio determinations in sports drug testing

Overview of attention for article published in Analytical & Bioanalytical Chemistry, April 2013
Altmetric Badge

Mentioned by

twitter
1 X user

Citations

dimensions_citation
37 Dimensions

Readers on

mendeley
19 Mendeley
Title
Combination of carbon isotope ratio with hydrogen isotope ratio determinations in sports drug testing
Published in
Analytical & Bioanalytical Chemistry, April 2013
DOI 10.1007/s00216-013-6949-3
Pubmed ID
Authors

Thomas Piper, Caroline Emery, Andreas Thomas, Martial Saugy, Mario Thevis

Abstract

Carbon isotope ratio (CIR) analysis has been routinely and successfully applied to doping control analysis for many years to uncover the misuse of endogenous steroids such as testosterone. Over the years, several challenges and limitations of this approach became apparent, e.g., the influence of inadequate chromatographic separation on CIR values or the emergence of steroid preparations comprising identical CIRs as endogenous steroids. While the latter has been addressed recently by the implementation of hydrogen isotope ratios (HIR), an improved sample preparation for CIR avoiding co-eluting compounds is presented herein together with newly established reference values of those endogenous steroids being relevant for doping controls. From the fraction of glucuronidated steroids 5β-pregnane-3α,20α-diol, 5α-androst-16-en-3α-ol, 3α-Hydroxy-5β-androstane-11,17-dione, 3α-hydroxy-5α-androstan-17-one (ANDRO), 3α-hydroxy-5β-androstan-17-one (ETIO), 3β-hydroxy-androst-5-en-17-one (DHEA), 5α- and 5β-androstane-3α,17β-diol (5aDIOL and 5bDIOL), 17β-hydroxy-androst-4-en-3-one and 17α-hydroxy-androst-4-en-3-one were included. In addition, sulfate conjugates of ANDRO, ETIO, DHEA, 3β-hydroxy-5α-androstan-17-one plus 17α- and androst-5-ene-3β,17β-diol were considered and analyzed after acidic solvolysis. The results obtained for the reference population encompassing n = 67 males and females confirmed earlier findings regarding factors influencing endogenous CIR. Variations in sample preparation influenced CIR measurements especially for 5aDIOL and 5bDIOL, the most valuable steroidal analytes for the detection of testosterone misuse. Earlier investigations on the HIR of the same reference population enabled the evaluation of combined measurements of CIR and HIR and its usefulness regarding both steroid metabolism studies and doping control analysis. The combination of both stable isotopes would allow for lower reference limits providing the same statistical power and certainty to distinguish between the endo- or exogenous origin of a urinary steroid.

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 19 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
France 1 5%
Unknown 18 95%

Demographic breakdown

Readers by professional status Count As %
Researcher 3 16%
Other 2 11%
Student > Postgraduate 2 11%
Student > Doctoral Student 1 5%
Student > Ph. D. Student 1 5%
Other 3 16%
Unknown 7 37%
Readers by discipline Count As %
Chemistry 5 26%
Agricultural and Biological Sciences 2 11%
Biochemistry, Genetics and Molecular Biology 1 5%
Nursing and Health Professions 1 5%
Medicine and Dentistry 1 5%
Other 1 5%
Unknown 8 42%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 15 January 2015.
All research outputs
#17,286,645
of 25,374,917 outputs
Outputs from Analytical & Bioanalytical Chemistry
#5,669
of 9,619 outputs
Outputs of similar age
#136,120
of 212,312 outputs
Outputs of similar age from Analytical & Bioanalytical Chemistry
#45
of 68 outputs
Altmetric has tracked 25,374,917 research outputs across all sources so far. This one is in the 21st percentile – i.e., 21% of other outputs scored the same or lower than it.
So far Altmetric has tracked 9,619 research outputs from this source. They receive a mean Attention Score of 3.1. This one is in the 37th percentile – i.e., 37% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 212,312 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 26th percentile – i.e., 26% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 68 others from the same source and published within six weeks on either side of this one. This one is in the 22nd percentile – i.e., 22% of its contemporaries scored the same or lower than it.