↓ Skip to main content

Human IP10-scFv and DC-induced CTL synergistically inhibit the growth of glioma in a xenograft model

Overview of attention for article published in Tumor Biology, May 2014
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age and source

Mentioned by

twitter
1 X user

Citations

dimensions_citation
20 Dimensions

Readers on

mendeley
19 Mendeley
Title
Human IP10-scFv and DC-induced CTL synergistically inhibit the growth of glioma in a xenograft model
Published in
Tumor Biology, May 2014
DOI 10.1007/s13277-014-1867-3
Pubmed ID
Authors

Xuan Wang, Fang-Cheng Zhang, Hong-Yang Zhao, Xiao-Ling Lu, Yun Sun, Zhi-Yong Xiong, Xiao-Bing Jiang

Abstract

The epidermal growth factor receptor (EGFR) mutant of EGFRvIII is highly expressed in glioma cells, and the EGFRvIII-specific dendritic cell (DC)-induced tumor antigen-specific CD8(+) cytotoxic T lymphocytes (CTLs) may hold promise in cancer immunotherapy. Interferon (IFN)-γ-inducible protein (IP)-10 (IP-10) is a potent inhibitor of angiogenesis and can recruit CXCR3(+) T cells, including CD8(+) T cells, which are important for the control of tumor growth. In this study, we assessed if the combination of IP10-EGFRvIIIscFv with DC-induced CTLs would improve the therapeutic antitumor efficacy. IP10-scFv was generated by linking the human IP-10 gene with the DNA fragment for anti-EGFRvIIIscFv with a (Gly4Ser)3 flexible linker, purified by affinity chromatography, and characterized for its anti-EGFRvIII immunoreactivity and chemotactic activity. DCs were isolated from human peripheral blood monocyte cells and pulsed with EGFRvIII-peptide, then co-cultured with autologous CD8(+) T cells. BALB/c-nu mice were inoculated with human glioma U87-EGFRvIII cells in the brain and treated intracranially with IP10-scFv and/or intravenously with DC-induced CTLs for evaluating the therapeutic effect. Treatment with both IP10-scFv and EGFRvIII peptide-pulsed, DC-induced CTL synergistically inhibited the growth of glioma and prolonged the survival of tumor-bearing mice, which was accompanied by the inhibition of tumor angiogenesis and enhancement of cytotoxicity, thereby increasing the numbers of brain-infiltrating lymphocytes (BILs) and prolonging the residence time of CTLs in the tumor.

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 19 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 19 100%

Demographic breakdown

Readers by professional status Count As %
Researcher 6 32%
Student > Bachelor 3 16%
Student > Ph. D. Student 3 16%
Student > Doctoral Student 2 11%
Student > Master 1 5%
Other 2 11%
Unknown 2 11%
Readers by discipline Count As %
Biochemistry, Genetics and Molecular Biology 4 21%
Medicine and Dentistry 4 21%
Agricultural and Biological Sciences 3 16%
Immunology and Microbiology 2 11%
Pharmacology, Toxicology and Pharmaceutical Science 1 5%
Other 3 16%
Unknown 2 11%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 15 January 2015.
All research outputs
#19,015,492
of 23,577,654 outputs
Outputs from Tumor Biology
#1,388
of 2,634 outputs
Outputs of similar age
#165,859
of 228,726 outputs
Outputs of similar age from Tumor Biology
#52
of 88 outputs
Altmetric has tracked 23,577,654 research outputs across all sources so far. This one is in the 11th percentile – i.e., 11% of other outputs scored the same or lower than it.
So far Altmetric has tracked 2,634 research outputs from this source. They receive a mean Attention Score of 2.3. This one is in the 29th percentile – i.e., 29% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 228,726 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 14th percentile – i.e., 14% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 88 others from the same source and published within six weeks on either side of this one. This one is in the 30th percentile – i.e., 30% of its contemporaries scored the same or lower than it.