↓ Skip to main content

From Molecules to Life: Quantifying the Complexity of Chemical and Biological Systems in the Universe

Overview of attention for article published in Journal of Molecular Evolution, December 2017
Altmetric Badge

About this Attention Score

  • In the top 25% of all research outputs scored by Altmetric
  • Good Attention Score compared to outputs of the same age (76th percentile)
  • Good Attention Score compared to outputs of the same age and source (78th percentile)

Mentioned by

twitter
10 X users

Citations

dimensions_citation
30 Dimensions

Readers on

mendeley
55 Mendeley
Title
From Molecules to Life: Quantifying the Complexity of Chemical and Biological Systems in the Universe
Published in
Journal of Molecular Evolution, December 2017
DOI 10.1007/s00239-017-9824-6
Pubmed ID
Authors

Thomas Böttcher

Abstract

Life is a complex phenomenon and much research has been devoted to both understanding its origins from prebiotic chemistry and discovering life beyond Earth. Yet, it has remained elusive how to quantify this complexity and how to compare chemical and biological units on one common scale. Here, a mathematical description of molecular complexity was applied allowing to quantitatively assess complexity of chemical structures. This in combination with the orthogonal measure of information complexity resulted in a two-dimensional complexity space ranging over the entire spectrum from molecules to organisms. Entities with a certain level of information complexity directly require a functionally complex mechanism for their production or replication and are hence indicative for life-like systems. In order to describe entities combining molecular and information complexity, the term biogenic unit was introduced. Exemplified biogenic unit complexities were calculated for ribozymes, protein enzymes, multimeric protein complexes, and even an entire virus particle. Complexities of prokaryotic and eukaryotic cells, as well as multicellular organisms, were estimated. Thereby distinct evolutionary stages in complexity space were identified. The here developed approach to compare the complexity of biogenic units allows for the first time to address the gradual characteristics of prebiotic and life-like systems without the need for a definition of life. This operational concept may guide our search for life in the Universe, and it may direct the investigations of prebiotic trajectories that lead towards the evolution of complexity at the origins of life.

X Demographics

X Demographics

The data shown below were collected from the profiles of 10 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 55 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 55 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 8 15%
Researcher 8 15%
Student > Bachelor 7 13%
Student > Doctoral Student 6 11%
Student > Master 5 9%
Other 8 15%
Unknown 13 24%
Readers by discipline Count As %
Chemistry 7 13%
Biochemistry, Genetics and Molecular Biology 6 11%
Agricultural and Biological Sciences 5 9%
Earth and Planetary Sciences 4 7%
Physics and Astronomy 4 7%
Other 14 25%
Unknown 15 27%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 7. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 25 August 2022.
All research outputs
#5,317,411
of 25,371,292 outputs
Outputs from Journal of Molecular Evolution
#261
of 1,498 outputs
Outputs of similar age
#106,419
of 454,341 outputs
Outputs of similar age from Journal of Molecular Evolution
#4
of 14 outputs
Altmetric has tracked 25,371,292 research outputs across all sources so far. Compared to these this one has done well and is in the 78th percentile: it's in the top 25% of all research outputs ever tracked by Altmetric.
So far Altmetric has tracked 1,498 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 5.8. This one has done well, scoring higher than 82% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 454,341 tracked outputs that were published within six weeks on either side of this one in any source. This one has done well, scoring higher than 76% of its contemporaries.
We're also able to compare this research output to 14 others from the same source and published within six weeks on either side of this one. This one has done well, scoring higher than 78% of its contemporaries.