↓ Skip to main content

Nuclear Bodies and Noncoding RNAs

Overview of attention for book
Cover of 'Nuclear Bodies and Noncoding RNAs'

Table of Contents

  1. Altmetric Badge
    Book Overview
  2. Altmetric Badge
    Chapter 1 Visualization of lncRNA by Single-Molecule Fluorescence In Situ Hybridization
  3. Altmetric Badge
    Chapter 2 Super-Resolution Imaging of Nuclear Bodies by STED Microscopy.
  4. Altmetric Badge
    Chapter 3 High-Resolution 3D DNA FISH Using Plasmid Probes and Computational Correction of Optical Aberrations to Study Chromatin Structure at the Sub-megabase Scale.
  5. Altmetric Badge
    Chapter 4 Time-Lapse Imaging of Nuclear Bodies
  6. Altmetric Badge
    Chapter 5 Visualization of Nucleic Acids with Synthetic Exciton-Controlled Fluorescent Oligonucleotide Probes
  7. Altmetric Badge
    Chapter 6 Live CLEM Imaging to Analyze Nuclear Structures at High Resolution
  8. Altmetric Badge
    Chapter 7 Ultrastructural Analysis of Nuclear Bodies Using Electron Microscopy
  9. Altmetric Badge
    Chapter 8 Analyses of Nuclear Proteins and Nucleic Acid Structures Using Atomic Force Microscopy.
  10. Altmetric Badge
    Chapter 9 Genome-Wide Co-Localization Screening of Nuclear Body Components Using a Fluorescently Tagged FLJ cDNA Clone Library.
  11. Altmetric Badge
    Chapter 10 Purification of Specific Chromatin Regions Using Oligonucleotides: Capture Hybridization Analysis of RNA Targets (CHART).
  12. Altmetric Badge
    Chapter 11 RNA Antisense Purification (RAP) for Mapping RNA Interactions with Chromatin.
  13. Altmetric Badge
    Chapter 12 In Situ Dissection of RNA Functional Subunits by Domain-Specific Chromatin Isolation by RNA Purification (dChIRP).
  14. Altmetric Badge
    Chapter 13 Extracting, Enriching, and Identifying Nuclear Body Sub-Complexes Using Label-Based Quantitative Mass Spectrometry.
  15. Altmetric Badge
    Chapter 14 Studying RNA-Binding Protein Interactions with Target mRNAs in Eukaryotic Cells: Native Ribonucleoprotein Immunoprecipitation (RIP) Assays
  16. Altmetric Badge
    Chapter 15 Cross-Linking and Immunoprecipitation of Nuclear RNA-Binding Proteins
  17. Altmetric Badge
    Chapter 16 Purification of Noncoding RNA and Bound Proteins Using FLAG Peptide-Conjugated Antisense-Oligonucleotides.
  18. Altmetric Badge
    Chapter 17 MMCT-Mediated Chromosome Engineering Technique Applicable to Functional Analysis of lncRNA and Nuclear Dynamics
  19. Altmetric Badge
    Chapter 18 Reconstitution of Nucleocytoplasmic Transport Using Digitonin-Permeabilized Cells
  20. Altmetric Badge
    Chapter 19 Genome-Wide Analysis of Long Noncoding RNA Turnover.
  21. Altmetric Badge
    Chapter 20 Knockdown of Nuclear-Retained Long Noncoding RNAs Using Modified DNA Antisense Oligonucleotides.
  22. Altmetric Badge
    Chapter 21 siRNA Screening of Nuclear Proteins
Attention for Chapter 1: Visualization of lncRNA by Single-Molecule Fluorescence In Situ Hybridization
Altmetric Badge

About this Attention Score

  • In the top 25% of all research outputs scored by Altmetric
  • High Attention Score compared to outputs of the same age (88th percentile)
  • High Attention Score compared to outputs of the same age and source (96th percentile)

Mentioned by

news
1 news outlet
twitter
1 X user

Citations

dimensions_citation
4 Dimensions

Readers on

mendeley
74 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Chapter title
Visualization of lncRNA by Single-Molecule Fluorescence In Situ Hybridization
Chapter number 1
Book title
Nuclear Bodies and Noncoding RNAs
Published in
Methods in molecular biology, January 2015
DOI 10.1007/978-1-4939-2253-6_1
Pubmed ID
Book ISBNs
978-1-4939-2252-9, 978-1-4939-2253-6
Authors

Margaret Dunagin, Moran N. Cabili, John Rinn, Arjun Raj, Dunagin, Margaret, Cabili, Moran N., Rinn, John, Raj, Arjun

Abstract

Single-molecule RNA fluorescence in situ hybridization is a technique that holds great potential for the study of long noncoding RNA. It enables quantification and spatial resolution of single RNA molecules within cells via hybridization of multiple, labeled nucleic acid probes to a target RNA. It has recently become apparent that single-molecule RNA FISH probes targeting noncoding RNA are more prone to off-target binding yielding spurious results than when targeting mRNA. Here we present a protocol for the application of single-molecule RNA FISH to the study of noncoding RNA as well as an experimental procedure for validating legitimate signals.

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 74 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 74 100%

Demographic breakdown

Readers by professional status Count As %
Researcher 21 28%
Student > Ph. D. Student 20 27%
Student > Master 7 9%
Student > Bachelor 5 7%
Student > Doctoral Student 3 4%
Other 9 12%
Unknown 9 12%
Readers by discipline Count As %
Agricultural and Biological Sciences 27 36%
Biochemistry, Genetics and Molecular Biology 26 35%
Medicine and Dentistry 4 5%
Pharmacology, Toxicology and Pharmaceutical Science 2 3%
Neuroscience 2 3%
Other 2 3%
Unknown 11 15%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 11. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 03 April 2023.
All research outputs
#2,933,175
of 23,509,253 outputs
Outputs from Methods in molecular biology
#574
of 13,360 outputs
Outputs of similar age
#42,092
of 356,388 outputs
Outputs of similar age from Methods in molecular biology
#34
of 1,001 outputs
Altmetric has tracked 23,509,253 research outputs across all sources so far. Compared to these this one has done well and is in the 87th percentile: it's in the top 25% of all research outputs ever tracked by Altmetric.
So far Altmetric has tracked 13,360 research outputs from this source. They receive a mean Attention Score of 3.4. This one has done particularly well, scoring higher than 95% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 356,388 tracked outputs that were published within six weeks on either side of this one in any source. This one has done well, scoring higher than 88% of its contemporaries.
We're also able to compare this research output to 1,001 others from the same source and published within six weeks on either side of this one. This one has done particularly well, scoring higher than 96% of its contemporaries.