↓ Skip to main content

Lefetamine, a controlled drug and pharmaceutical lead of new designer drugs: synthesis, metabolism, and detectability in urine and human liver preparations using GC-MS, LC-MSn, and LC-high resolution-M…

Overview of attention for article published in Analytical & Bioanalytical Chemistry, January 2015
Altmetric Badge

About this Attention Score

  • Good Attention Score compared to outputs of the same age (72nd percentile)
  • High Attention Score compared to outputs of the same age and source (80th percentile)

Mentioned by

twitter
2 X users
wikipedia
4 Wikipedia pages

Citations

dimensions_citation
11 Dimensions

Readers on

mendeley
11 Mendeley
Title
Lefetamine, a controlled drug and pharmaceutical lead of new designer drugs: synthesis, metabolism, and detectability in urine and human liver preparations using GC-MS, LC-MSn, and LC-high resolution-MS/MS
Published in
Analytical & Bioanalytical Chemistry, January 2015
DOI 10.1007/s00216-014-8414-3
Pubmed ID
Authors

Carina S. D. Wink, Golo M. J. Meyer, Josef Zapp, Hans H. Maurer

Abstract

Lefetamine (N,N-dimethyl-1,2-diphenylethylamine, L-SPA) was marketed as an opioid analgesic in Japan and Italy. After being widely abused, it became a controlled substance. It seems to be a pharmaceutical lead for designer drugs because N-ethyl-1,2-diphenylethylamine (NEDPA) and N-iso-propyl-1,2-diphenylethylamine (NPDPA) were confiscated by the German police. In contrast to these derivatives, metabolism and detectability of lefetamine were not studied yet. Therefore, phase I and II metabolism should be elucidated and correlated to the derivatives. Also the detectability using the authors' standard urine screening approaches (SUSA) needed to be checked. As lefetamine was commercially unavailable, it had to be synthesized first. For metabolism studies, a high dose of lefetamine was administered to rats and the urine samples worked up in different ways. Separation and analysis were achieved by gas chromatography-mass spectrometry (GC-MS) and liquid chromatography-high resolution-tandem mass spectrometry (LC-HR-MS/MS). In accordance with NEPDA and NPDPA, the following metabolic steps could be proposed: N-oxidation, N-dealkylation, mono- and bis-hydroxylation of the benzene ring, and hydroxylation of the phenyl ring only after N-dealkylation. The di-hydroxy metabolites were conjugated by methylation of one hydroxy group, and hydroxy metabolites by glucuronidation or sulfation. All initial metabolites could also be detected in human liver preparations. After a therapeutic lefetamine dose, the bis-nor, bis-nor-hydroxy, nor-hydroxy, nor-di-hydroxy metabolites could be detected using the authors' GC-MS SUSA and the nor-hydroxy-glucuronide by the LC-MS(n) SUSA. Thus, an intake of lefetamine should be detectable in human urine assuming similar pharmacokinetics.

X Demographics

X Demographics

The data shown below were collected from the profiles of 2 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 11 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 11 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 2 18%
Student > Master 2 18%
Other 2 18%
Researcher 1 9%
Unknown 4 36%
Readers by discipline Count As %
Chemistry 2 18%
Medicine and Dentistry 2 18%
Agricultural and Biological Sciences 1 9%
Pharmacology, Toxicology and Pharmaceutical Science 1 9%
Social Sciences 1 9%
Other 0 0%
Unknown 4 36%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 4. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 08 May 2023.
All research outputs
#7,778,071
of 25,373,627 outputs
Outputs from Analytical & Bioanalytical Chemistry
#1,786
of 9,618 outputs
Outputs of similar age
#97,358
of 358,615 outputs
Outputs of similar age from Analytical & Bioanalytical Chemistry
#22
of 127 outputs
Altmetric has tracked 25,373,627 research outputs across all sources so far. This one has received more attention than most of these and is in the 69th percentile.
So far Altmetric has tracked 9,618 research outputs from this source. They receive a mean Attention Score of 3.1. This one has done well, scoring higher than 80% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 358,615 tracked outputs that were published within six weeks on either side of this one in any source. This one has gotten more attention than average, scoring higher than 72% of its contemporaries.
We're also able to compare this research output to 127 others from the same source and published within six weeks on either side of this one. This one has done well, scoring higher than 80% of its contemporaries.