↓ Skip to main content

ATM and ATR play complementary roles in the behavior of excitatory and inhibitory vesicle populations

Overview of attention for article published in Proceedings of the National Academy of Sciences of the United States of America, December 2017
Altmetric Badge

About this Attention Score

  • In the top 5% of all research outputs scored by Altmetric
  • High Attention Score compared to outputs of the same age (98th percentile)
  • High Attention Score compared to outputs of the same age and source (85th percentile)

Mentioned by

news
12 news outlets
blogs
3 blogs
twitter
8 X users
facebook
2 Facebook pages

Citations

dimensions_citation
41 Dimensions

Readers on

mendeley
62 Mendeley
citeulike
1 CiteULike
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
ATM and ATR play complementary roles in the behavior of excitatory and inhibitory vesicle populations
Published in
Proceedings of the National Academy of Sciences of the United States of America, December 2017
DOI 10.1073/pnas.1716892115
Pubmed ID
Authors

Aifang Cheng, Teng Zhao, Kai-Hei Tse, Hei-Man Chow, Yong Cui, Liwen Jiang, Shengwang Du, Michael M. T. Loy, Karl Herrup

Abstract

ATM (ataxia-telangiectasia mutated) and ATR (ATM and Rad3-related) are large PI3 kinases whose human mutations result in complex syndromes that include a compromised DNA damage response (DDR) and prominent nervous system phenotypes. Both proteins are nuclear-localized in keeping with their DDR functions, yet both are also found in cytoplasm, including on neuronal synaptic vesicles. In ATM- or ATR-deficient neurons, spontaneous vesicle release is reduced, but a drop in ATM or ATR level also slows FM4-64 dye uptake. In keeping with this, both proteins bind to AP-2 complex components as well as to clathrin, suggesting roles in endocytosis and vesicle recycling. The two proteins play complementary roles in the DDR; ATM is engaged in the repair of double-strand breaks, while ATR deals mainly with single-strand damage. Unexpectedly, this complementarity extends to these proteins' synaptic function as well. Superresolution microscopy and coimmunoprecipitation reveal that ATM associates exclusively with excitatory (VGLUT1+) vesicles, while ATR associates only with inhibitory (VGAT+) vesicles. The levels of ATM and ATR respond to each other; when ATM is deficient, ATR levels rise, and vice versa. Finally, blocking NMDA, but not GABA, receptors causes ATM levels to rise while ATR levels respond to GABA, but not NMDA, receptor blockade. Taken together, our data suggest that ATM and ATR are part of the cellular "infrastructure" that maintains the excitatory/inhibitory balance of the nervous system. This idea has important implications for the human diseases resulting from their genetic deficiency.

X Demographics

X Demographics

The data shown below were collected from the profiles of 8 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 62 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 62 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 9 15%
Student > Master 8 13%
Student > Bachelor 8 13%
Researcher 5 8%
Professor 3 5%
Other 8 13%
Unknown 21 34%
Readers by discipline Count As %
Biochemistry, Genetics and Molecular Biology 17 27%
Neuroscience 9 15%
Agricultural and Biological Sciences 6 10%
Pharmacology, Toxicology and Pharmaceutical Science 1 2%
Unspecified 1 2%
Other 7 11%
Unknown 21 34%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 107. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 11 July 2018.
All research outputs
#375,159
of 24,625,114 outputs
Outputs from Proceedings of the National Academy of Sciences of the United States of America
#6,861
of 101,438 outputs
Outputs of similar age
#8,882
of 452,022 outputs
Outputs of similar age from Proceedings of the National Academy of Sciences of the United States of America
#132
of 939 outputs
Altmetric has tracked 24,625,114 research outputs across all sources so far. Compared to these this one has done particularly well and is in the 98th percentile: it's in the top 5% of all research outputs ever tracked by Altmetric.
So far Altmetric has tracked 101,438 research outputs from this source. They typically receive a lot more attention than average, with a mean Attention Score of 38.8. This one has done particularly well, scoring higher than 93% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 452,022 tracked outputs that were published within six weeks on either side of this one in any source. This one has done particularly well, scoring higher than 98% of its contemporaries.
We're also able to compare this research output to 939 others from the same source and published within six weeks on either side of this one. This one has done well, scoring higher than 85% of its contemporaries.