↓ Skip to main content

Feasibility of sulfide control in sewers by reuse of iron rich drinking water treatment sludge

Overview of attention for article published in Water Research, January 2015
Altmetric Badge

Mentioned by

twitter
1 X user

Citations

dimensions_citation
75 Dimensions

Readers on

mendeley
108 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Feasibility of sulfide control in sewers by reuse of iron rich drinking water treatment sludge
Published in
Water Research, January 2015
DOI 10.1016/j.watres.2014.12.044
Pubmed ID
Authors

Jing Sun, Ilje Pikaar, Keshab Raj Sharma, Jürg Keller, Zhiguo Yuan

Abstract

Dosage of iron salt is the most commonly used method for sulfide control in sewer networks but incurs high chemical costs. In this study, we experimentally investigate the feasibility of using iron rich drinking water treatment sludge for sulfide control in sewers. A lab-scale rising main sewer biofilm reactor was used. The sulfide concentration in the effluent decreased from 15.5 to 19.8 mgS/L (without dosing) to below 0.7-2.3 mgS/L at a sludge dosing rate achieving an iron to total dissolved inorganic sulfur molar ratio (Fe:S) of 1:1, with further removal of sulfide possible by prolonging the reaction time. In fact, batch tests revealed an Fe consumption to sulfide removal ratio of 0.5 ± 0.02 (mole:mole), suggesting the possible occurrence of other reactions involving the removal of sulfide. Modelling revealed that the reaction between iron in sludge and sulfide has reaction orders of 0.65 ± 0.01 and 0.77 ± 0.02 with respect to the Fe and sulfide concentrations, respectively. The addition of sludge slightly increased the total chemical oxidation demand (tCOD) concentration (by approximately 12%) as expected, but decreased the soluble chemical oxidation demand (sCOD) concentration and methane formation by 7% and 20%, respectively. Some phosphate removal (13%) was also observed at the sludge dosing rate of 1:1 (Fe:S), which is beneficial to nutrient removal from the wastewater. Overall, this study suggests that dosing iron-rich drinking water sludge to sewers could be an effective strategy for sulfide removal in sewer systems, which would also reduce the sludge disposal costs for drinking water treatment works. However, its potential side-effects on sewer sedimentation and on the wastewater treatment plant effluent remain to be investigated.

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 108 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Malaysia 1 <1%
Unknown 107 99%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 25 23%
Student > Master 13 12%
Student > Bachelor 8 7%
Researcher 7 6%
Other 5 5%
Other 17 16%
Unknown 33 31%
Readers by discipline Count As %
Engineering 35 32%
Environmental Science 16 15%
Agricultural and Biological Sciences 10 9%
Chemical Engineering 4 4%
Materials Science 2 2%
Other 2 2%
Unknown 39 36%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 24 January 2015.
All research outputs
#22,756,649
of 25,371,288 outputs
Outputs from Water Research
#9,083
of 11,871 outputs
Outputs of similar age
#306,069
of 358,845 outputs
Outputs of similar age from Water Research
#93
of 108 outputs
Altmetric has tracked 25,371,288 research outputs across all sources so far. This one is in the 1st percentile – i.e., 1% of other outputs scored the same or lower than it.
So far Altmetric has tracked 11,871 research outputs from this source. They receive a mean Attention Score of 5.0. This one is in the 1st percentile – i.e., 1% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 358,845 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 108 others from the same source and published within six weeks on either side of this one. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.