↓ Skip to main content

Host-Pathogen Interactions

Overview of attention for book
Cover of 'Host-Pathogen Interactions'

Table of Contents

  1. Altmetric Badge
    Book Overview
  2. Altmetric Badge
    Chapter 1 Genetic Association Studies in Host–Pathogen Interaction Analysis
  3. Altmetric Badge
    Chapter 2 Bacterial Genotyping Methods: From the Basics to Modern
  4. Altmetric Badge
    Chapter 3 Real-Time Reverse Transcription PCR as a Tool to Study Virulence Gene Regulation in Bacterial Pathogens
  5. Altmetric Badge
    Chapter 4 Usage of a Bioluminescence Reporter System to Image Promoter Activity During Host Infection
  6. Altmetric Badge
    Chapter 5 lacZ Reporter System as a Tool to Study Virulence Gene Regulation in Bacterial Pathogens
  7. Altmetric Badge
    Chapter 6 Western Blotting Against Tagged Virulence Determinants to Study Bacterial Pathogenicity
  8. Altmetric Badge
    Chapter 7 Molecular Methods to Analyze the Effect of Proteins Expressed by Salmonella During Its Intracellular Stage
  9. Altmetric Badge
    Chapter 8 Organoids as a Model to Study Infectious Disease
  10. Altmetric Badge
    Chapter 9 Surface Proteome Biotinylation Combined with Bioinformatic Tools as a Strategy for Predicting Pathogen Interacting Proteins
  11. Altmetric Badge
    Chapter 10 Systems Biology Modeling to Study Pathogen–Host Interactions
  12. Altmetric Badge
    Chapter 11 Phage Therapy: Various Perspectives on How to Improve the Art
  13. Altmetric Badge
    Chapter 12 Application of RNA-seq and Bioimaging Methods to Study Microbe–Microbe Interactions and Their Effects on Biofilm Formation and Gene Expression
  14. Altmetric Badge
    Chapter 13 Serial Dilution-Based Growth Curves and Growth Curve Synchronization for High-Resolution Time Series of Bacterial Biofilm Growth
  15. Altmetric Badge
    Chapter 14 Detection of Bacterial Quorum Sensing Molecules
  16. Altmetric Badge
    Chapter 15 Generating Chromosome-Located Transcriptional Fusions to Fluorescent Proteins for Single-Cell Gene Expression Analysis in Pseudomonas syringae
  17. Altmetric Badge
    Chapter 16 Introduction of Genetic Material in Ralstonia solanacearum Through Natural Transformation and Conjugation
  18. Altmetric Badge
    Chapter 17 In Vitro and In Vivo Secretion/Translocation Assays to Identify Novel Ralstonia solanacearum Type 3 Effectors
  19. Altmetric Badge
    Chapter 18 Plant Pathogenicity Phenotyping of Ralstonia solanacearum Strains
  20. Altmetric Badge
    Chapter 19 Methods to Quantify Biotic-Induced Stress in Plants
  21. Altmetric Badge
    Chapter 20 From Sample to Data: Preparing, Obtaining, and Analyzing Images of Plant-Pathogen Interactions Using Confocal Microscopy
  22. Altmetric Badge
    Chapter 21 Screening of c-di-GMP-Regulated Exopolysaccharides in Host Interacting Bacteria
  23. Altmetric Badge
    Chapter 22 Primary Characterization of Small RNAs in Symbiotic Nitrogen-Fixing Bacteria
  24. Altmetric Badge
    Chapter 23 A New, Nondestructive, Split-Root System for Local and Systemic Plant Responses Studies with Soybean
  25. Altmetric Badge
    Chapter 24 Methods for the Characterization of Plant-Growth Promoting Rhizobacteria
Attention for Chapter 23: A New, Nondestructive, Split-Root System for Local and Systemic Plant Responses Studies with Soybean
Altmetric Badge

Mentioned by

twitter
1 X user

Citations

dimensions_citation
7 Dimensions

Readers on

mendeley
9 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Chapter title
A New, Nondestructive, Split-Root System for Local and Systemic Plant Responses Studies with Soybean
Chapter number 23
Book title
Host-Pathogen Interactions
Published in
Methods in molecular biology, January 2018
DOI 10.1007/978-1-4939-7604-1_23
Pubmed ID
Book ISBNs
978-1-4939-7603-4, 978-1-4939-7604-1
Authors

Ángeles Hidalgo, José E. Ruiz-Sainz, José M. Vinardell

Abstract

Plants use long-distance signaling mechanisms to coordinate their growth and control their interactions, positive or negative, with microbes. Split-root systems (SRS) have been used to study the relevance of both local and systemic plant mechanisms that participate in the control of rhizobia-legume symbioses. In this work we have developed a modification of the standard split-root system (SRS) used with soybean. This modified method, unlike previous systems, operates in hydroponics conditions and therefore is nondestructive and allows for the continuous monitoring of soybean roots throughout the whole experiment.

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 9 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 9 100%

Demographic breakdown

Readers by professional status Count As %
Professor 3 33%
Student > Ph. D. Student 2 22%
Researcher 2 22%
Student > Master 1 11%
Unknown 1 11%
Readers by discipline Count As %
Agricultural and Biological Sciences 6 67%
Biochemistry, Genetics and Molecular Biology 1 11%
Environmental Science 1 11%
Unknown 1 11%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 31 December 2017.
All research outputs
#20,458,307
of 23,015,156 outputs
Outputs from Methods in molecular biology
#9,940
of 13,156 outputs
Outputs of similar age
#378,178
of 442,345 outputs
Outputs of similar age from Methods in molecular biology
#1,193
of 1,498 outputs
Altmetric has tracked 23,015,156 research outputs across all sources so far. This one is in the 1st percentile – i.e., 1% of other outputs scored the same or lower than it.
So far Altmetric has tracked 13,156 research outputs from this source. They receive a mean Attention Score of 3.4. This one is in the 1st percentile – i.e., 1% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 442,345 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 1,498 others from the same source and published within six weeks on either side of this one. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.