↓ Skip to main content

Cross calibration between XRF and ICP-MS for high spatial resolution analysis of ombrotrophic peat cores for palaeoclimatic studies

Overview of attention for article published in Analytical & Bioanalytical Chemistry, November 2014
Altmetric Badge

Mentioned by

twitter
1 X user

Citations

dimensions_citation
9 Dimensions

Readers on

mendeley
50 Mendeley
Title
Cross calibration between XRF and ICP-MS for high spatial resolution analysis of ombrotrophic peat cores for palaeoclimatic studies
Published in
Analytical & Bioanalytical Chemistry, November 2014
DOI 10.1007/s00216-014-8289-3
Pubmed ID
Authors

Luisa Poto, Jacopo Gabrieli, Simon Crowhurst, Claudio Agostinelli, Andrea Spolaor, Warren R. L. Cairns, Giulio Cozzi, Carlo Barbante

Abstract

Ombrotrophic peatlands are remarkable repositories of high-quality climatic signals because their only source of nutrients is precipitation. Although several analytical techniques are available for analysing inorganic components in peat samples, they generally provide only low-resolution data sets. Here we present a new analytical approach for producing high-resolution data on main and trace elements from ombrotrophic peat cores. Analyses were carried out on a 7-m-long peat core collected from Danta di Cadore, North-Eastern Italy (46° 34' 16″ N, 12° 29' 58″ E). Ca, Ti, Cr, Fe, Cu, Zn, Ga, Sr, Y, Cd, Ba and Pb were detected at a resolution of 2.5 mm with a non-destructive X-ray fluorescence core scanner (XRF-CS). Calibration and quantification of the XRF-CS intensities was obtained using collision reaction cell inductively coupled plasma quadruple mass spectrometry (CRC-ICP-QMS). CRC-ICP-QMS measurements were carried out on discrete samples at a resolution of 1 cm, after dissolution of 150-mg aliquots with 9 ml HNO3 and 1 ml HF at 220 °C in a microwave system. We compare qualitative XRF-CS and quantitative CRC-ICP-MS data and, however the several sources of variability of the data, develop a robust statistical approach to determine the R (2) and the coefficient of a simple regression model together with confidence intervals. Perfect positive correlations were estimated for Cd, Cr, Pb, Sr, Ti and Zn; high positive correlations for Ba (0.8954), Y (0.7378), Fe (0.7349) and Cu (0.7028); while moderate positive correlations for Ga (0.5951) and Ca (0.5435). With our results, we demonstrate that XRF scanning techniques can be used, together with other well-established geochemical techniques (such as ICP-MS), to produce high-resolution (up to 2.5 mm) quantitative data from ombrotrophic peat bog cores.

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 50 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
United Kingdom 2 4%
Unknown 48 96%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 15 30%
Student > Master 9 18%
Researcher 9 18%
Other 3 6%
Student > Doctoral Student 3 6%
Other 2 4%
Unknown 9 18%
Readers by discipline Count As %
Earth and Planetary Sciences 19 38%
Environmental Science 7 14%
Chemistry 5 10%
Agricultural and Biological Sciences 4 8%
Biochemistry, Genetics and Molecular Biology 2 4%
Other 4 8%
Unknown 9 18%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 28 January 2015.
All research outputs
#22,759,802
of 25,374,917 outputs
Outputs from Analytical & Bioanalytical Chemistry
#7,542
of 9,619 outputs
Outputs of similar age
#315,990
of 369,889 outputs
Outputs of similar age from Analytical & Bioanalytical Chemistry
#100
of 114 outputs
Altmetric has tracked 25,374,917 research outputs across all sources so far. This one is in the 1st percentile – i.e., 1% of other outputs scored the same or lower than it.
So far Altmetric has tracked 9,619 research outputs from this source. They receive a mean Attention Score of 3.1. This one is in the 1st percentile – i.e., 1% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 369,889 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 114 others from the same source and published within six weeks on either side of this one. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.