↓ Skip to main content

The Roles of p38 MAPK/MSK1 Signaling Pathway in the Neuroprotection of Hypoxic Postconditioning Against Transient Global Cerebral Ischemia in Adult Rats

Overview of attention for article published in Molecular Neurobiology, December 2013
Altmetric Badge

Mentioned by

twitter
1 X user

Citations

dimensions_citation
37 Dimensions

Readers on

mendeley
16 Mendeley
Title
The Roles of p38 MAPK/MSK1 Signaling Pathway in the Neuroprotection of Hypoxic Postconditioning Against Transient Global Cerebral Ischemia in Adult Rats
Published in
Molecular Neurobiology, December 2013
DOI 10.1007/s12035-013-8611-7
Pubmed ID
Authors

Pingping Zhu, Lixuan Zhan, Tingna Zhu, Donghai Liang, Jiaoyue Hu, Weiwen Sun, Qinghua Hou, Huarong Zhou, Baoxing Wu, Yanmei Wang, En Xu

Abstract

Postconditioning has regenerated interest as a mechanical intervention against cerebral ischemia/reperfusion injury, but its molecular mechanisms remain unknown. We previously reported that hypoxic postconditioning (HPC) ameliorated neuronal death induced by transient global cerebral ischemia (tGCI) in hippocampal CA1 subregion of adult rats. This study tested the hypothesis that p38-mitogen-activated protein kinase (p38 MAPK)/mitogen- and stress-response kinase 1 (MSK1) signaling pathway plays a role in the HPC-induced neuroprotection. Male Wistar rats were subjected to 10 min ischemia induced by applying the four-vessel occlusion method. HPC with 120 min was applied at 24 h after reperfusion. Immunohistochemistry and Western blot were used to detect the expression of phosphorylation of p38 MAPK and MSK1, as well as cleaved caspase-3. We found that HPC induced a significant increase of phosphorylated p38 MAPK and MSK1 in neurons of hippocampal CA1 region and a significant decrease in glial cells after tGCI as well. Furthermore, HPC attenuated caspase-3 cleavation triggered by tGCI in CA1 region. Moreover, p38 MAPK inhibition by SB203580 significantly decreased the phosphorylation of MSK1, increased cleaved caspase-3 expression, and abolished the neuroprotection of HPC. These findings suggested that p38 MAPK/MSK1 signaling axis contributed to HPC-mediated neuroprotection against tGCI, at least in part, by regulating the activation of caspase-3.

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 16 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 16 100%

Demographic breakdown

Readers by professional status Count As %
Researcher 3 19%
Lecturer 2 13%
Student > Doctoral Student 1 6%
Unspecified 1 6%
Student > Master 1 6%
Other 3 19%
Unknown 5 31%
Readers by discipline Count As %
Medicine and Dentistry 3 19%
Neuroscience 2 13%
Unspecified 1 6%
Psychology 1 6%
Business, Management and Accounting 1 6%
Other 2 13%
Unknown 6 38%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 28 January 2015.
All research outputs
#20,251,039
of 22,780,165 outputs
Outputs from Molecular Neurobiology
#2,780
of 3,442 outputs
Outputs of similar age
#266,100
of 306,297 outputs
Outputs of similar age from Molecular Neurobiology
#19
of 27 outputs
Altmetric has tracked 22,780,165 research outputs across all sources so far. This one is in the 1st percentile – i.e., 1% of other outputs scored the same or lower than it.
So far Altmetric has tracked 3,442 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 6.2. This one is in the 1st percentile – i.e., 1% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 306,297 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 27 others from the same source and published within six weeks on either side of this one. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.