↓ Skip to main content

Expression of genes and processing of enzymes for the biosynthesis of penicillins and cephalosporins

Overview of attention for article published in Antonie van Leeuwenhoek, September 1994
Altmetric Badge

Mentioned by

wikipedia
13 Wikipedia pages

Citations

dimensions_citation
16 Dimensions

Readers on

mendeley
20 Mendeley
citeulike
1 CiteULike
Title
Expression of genes and processing of enzymes for the biosynthesis of penicillins and cephalosporins
Published in
Antonie van Leeuwenhoek, September 1994
DOI 10.1007/bf00871951
Pubmed ID
Authors

Juan F. Martín, Santiago Gutiérrez, Francisco J. Fernández, Javier Velasco, Francisco Fierro, Ana T. Marcos, Katarina Kosalkova

Abstract

The genes pcbAB, pcbC and penDE encoding the enzymes (alpha-aminoadipyl-cysteinyl-valine synthetase, isopenicillin N synthase and isopenicillin N acyltransferase, respectively) involved in the biosynthesis of penicillin have been cloned from Penicillin chrysogenum and Aspergillus nidulans. They are clustered in chromosome I (10.4 Mb) of P. chrysogenum, in chromosome II of Penicillium notatum (9.6 Mb) and in chromosome VI (3.0 Mb) of A. nidulans. Each gene is expressed as a single transcript from separate promoters. Enzyme regulation studies and gene expression analysis have provided useful information to understand the control of genes involved in penicillin biosynthesis. The enzyme isopenicillin N acyltransferase encoded by the penDE gene is synthesized as a 40 kDa protein that is (self)processed into two subunits of 29 and 11 kDa. Both subunits appear to be required for acyl-CoA 6-APA acyltransferase activity. The isopenicillin N acyltransferase was shown to be located in microbodies, whereas the isopenicillin N synthase has been reported to be present in vesicles of the Golgi body and in the cell wall. A mutant in the carboxyl-terminal region of the isopenicillin N acyltransferase lacking the three final amino acids of the enzymes was not properly located in the microbodies and failed to synthesize penicillin in vivo. In C. acremonium the genes involved in cephalosporin biosynthesis are separated in at least two clusters. Cluster I (pcbAB-pcbC) encodes the first two enzymes (alpha-aminoadipyl-cysteinyl) valine synthetase and isopenicillin N synthase) of the cephalosporin pathway which are very similar to those involved in penicillin biosynthesis. Cluster II (cefEF-cefG), encodes the last three enzymatic activities (deacetoxycephalosporin C synthetase/hydroxylase and deacetylcephalosporin C acetyltransferase) of the cephalosporin pathway. It is unknown, at this time, if the cefD gene encoding isopenicillin epimerase is linked to any of these two clusters. Methionine stimulates cephalosporin biosynthesis in cultures of three different strains of A. chrysogenum. Methionine increases the levels of enzymes (isopenicillin N synthase and deacetylcephalosporin C acetyltransferase) expressed from genes (pcbC and cefG respectively) which are separated in the two different clusters of cephalosporin biosynthesis genes. This result suggests that both clusters of genes have regulatory elements which are activated by methionine. Methionine-supplemented cells showed higher levels of transcripts of the pcbAB, pcbC, cefEF genes and to a lesser extent of cefG than cells grown in absence of methionine. The levels of the cefG transcript were very low as compared to those of pcbAB, pcbC and cefEF.(ABSTRACT TRUNCATED AT 400 WORDS)

Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 20 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Germany 1 5%
Unknown 19 95%

Demographic breakdown

Readers by professional status Count As %
Student > Master 5 25%
Student > Bachelor 3 15%
Professor > Associate Professor 2 10%
Researcher 2 10%
Student > Ph. D. Student 2 10%
Other 3 15%
Unknown 3 15%
Readers by discipline Count As %
Agricultural and Biological Sciences 6 30%
Biochemistry, Genetics and Molecular Biology 3 15%
Chemistry 3 15%
Immunology and Microbiology 2 10%
Earth and Planetary Sciences 1 5%
Other 1 5%
Unknown 4 20%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 3. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 10 November 2020.
All research outputs
#8,535,472
of 25,374,647 outputs
Outputs from Antonie van Leeuwenhoek
#601
of 2,151 outputs
Outputs of similar age
#6,126
of 19,916 outputs
Outputs of similar age from Antonie van Leeuwenhoek
#3
of 4 outputs
Altmetric has tracked 25,374,647 research outputs across all sources so far. This one is in the 43rd percentile – i.e., 43% of other outputs scored the same or lower than it.
So far Altmetric has tracked 2,151 research outputs from this source. They receive a mean Attention Score of 3.8. This one is in the 41st percentile – i.e., 41% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 19,916 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 8th percentile – i.e., 8% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 4 others from the same source and published within six weeks on either side of this one.