↓ Skip to main content

Unified understanding of folding and binding mechanisms of globular and intrinsically disordered proteins

Overview of attention for article published in Biophysical Reviews, January 2018
Altmetric Badge

Mentioned by

twitter
1 X user

Citations

dimensions_citation
49 Dimensions

Readers on

mendeley
97 Mendeley
Title
Unified understanding of folding and binding mechanisms of globular and intrinsically disordered proteins
Published in
Biophysical Reviews, January 2018
DOI 10.1007/s12551-017-0346-7
Pubmed ID
Authors

Munehito Arai

Abstract

Extensive experimental and theoretical studies have advanced our understanding of the mechanisms of folding and binding of globular proteins, and coupled folding and binding of intrinsically disordered proteins (IDPs). The forces responsible for conformational changes and binding are common in both proteins; however, these mechanisms have been separately discussed. Here, we attempt to integrate the mechanisms of coupled folding and binding of IDPs, folding of small and multi-subdomain proteins, folding of multimeric proteins, and ligand binding of globular proteins in terms of conformational selection and induced-fit mechanisms as well as the nucleation-condensation mechanism that is intermediate between them. Accumulating evidence has shown that both the rate of conformational change and apparent rate of binding between interacting elements can determine reaction mechanisms. Coupled folding and binding of IDPs occurs mainly by induced-fit because of the slow folding in the free form, while ligand binding of globular proteins occurs mainly by conformational selection because of rapid conformational change. Protein folding can be regarded as the binding of intramolecular segments accompanied by secondary structure formation. Multi-subdomain proteins fold mainly by the induced-fit (hydrophobic collapse) mechanism, as the connection of interacting segments enhances the binding (compaction) rate. Fewer hydrophobic residues in small proteins reduce the intramolecular binding rate, resulting in the nucleation-condensation mechanism. Thus, the folding and binding of globular proteins and IDPs obey the same general principle, suggesting that the coarse-grained, statistical mechanical model of protein folding is promising for a unified theoretical description of all mechanisms.

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 97 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 97 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 19 20%
Student > Bachelor 16 16%
Student > Master 12 12%
Researcher 11 11%
Professor 5 5%
Other 11 11%
Unknown 23 24%
Readers by discipline Count As %
Biochemistry, Genetics and Molecular Biology 40 41%
Chemistry 13 13%
Agricultural and Biological Sciences 7 7%
Physics and Astronomy 3 3%
Chemical Engineering 2 2%
Other 7 7%
Unknown 25 26%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 07 January 2018.
All research outputs
#20,458,307
of 23,015,156 outputs
Outputs from Biophysical Reviews
#704
of 799 outputs
Outputs of similar age
#378,273
of 442,080 outputs
Outputs of similar age from Biophysical Reviews
#31
of 53 outputs
Altmetric has tracked 23,015,156 research outputs across all sources so far. This one is in the 1st percentile – i.e., 1% of other outputs scored the same or lower than it.
So far Altmetric has tracked 799 research outputs from this source. They receive a mean Attention Score of 2.7. This one is in the 1st percentile – i.e., 1% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 442,080 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 53 others from the same source and published within six weeks on either side of this one. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.