↓ Skip to main content

Flupirtine shows functional NMDA receptor antagonism by enhancing Mg2+ block via activation of voltage independent potassium channels

Overview of attention for article published in Journal of Neural Transmission, October 1999
Altmetric Badge

About this Attention Score

  • In the top 25% of all research outputs scored by Altmetric
  • High Attention Score compared to outputs of the same age (87th percentile)

Mentioned by

patent
6 patents
wikipedia
4 Wikipedia pages

Citations

dimensions_citation
93 Dimensions

Readers on

mendeley
28 Mendeley
Title
Flupirtine shows functional NMDA receptor antagonism by enhancing Mg2+ block via activation of voltage independent potassium channels
Published in
Journal of Neural Transmission, October 1999
DOI 10.1007/s007020050206
Pubmed ID
Authors

J. Kornhuber, S. Bleich, J. Wiltfang, M. Maler, C. G. Parsons

Abstract

The spectrum of action of flupirtine includes analgesia, muscle relaxation and neuroprotection. N-methyl-D-aspartate (NMDA) receptor antagonism has been discussed as a possible mechanism of action of this compound with little direct evidence. The objective of the present study was to develop a plausible model to explain flupirtine's spectrum of action. A four-stage strategy was selected for this purpose: Firstly, the serum concentration of flupirtine under therapeutic conditions was determined on the basis of the current literature. The second stage involved assessing the known in-vitro effects in light of the therapeutic active concentration. Using whole cell patch clamp recordings from cultured rat superior colliculus neurones interactions between flupirtine and NMDA receptors were assessed. Only very high concentrations of flupirtine antagonized inward currents to NMDA (200 microM) at -70 mV with an lC50 against steady-state responses of 182.1+/-12.1 microM. The effects of flupirtine were voltage-independent and not associated with receptor desensitization making actions within the NMDA receptor channel or at the glycine modulatory site unlikely. NMDA receptor antagonism probably has little relevance for the clinical efficacy of flupirtine as the concentrations needed were far higher than those achieved in clinical practice. However, the activation of a G-protein-regulated inwardly rectifying K+ channel was identified as an interesting molecular target site of flupirtine. In the next stage, the central nervous spectrum of action of experimental K+ channel openers (PCO) was considered. As far as they have been studied, experimental K+ channel openers display a spectrum of action comparable to that of flupirtine. In the final stage, a global model was developed in which flupirtine stabilizes the resting membrane potential by activating inwardly rectifying K+ channels, thus indirectly inhibiting the activation of NMDA receptors. The model presented here reconciles the known functional NMDA receptor antagonism of flupirtine with the activation of K+ channels that occurs at therapeutic concentrations, thus providing an understanding of flupirtine's spectrum of action. This makes flupirtine the prototype of a clinically applicable substance group with analgesic, muscle-relaxant and neuroprotective properties.

Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 28 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 28 100%

Demographic breakdown

Readers by professional status Count As %
Researcher 10 36%
Student > Ph. D. Student 5 18%
Student > Postgraduate 3 11%
Professor 2 7%
Student > Master 1 4%
Other 3 11%
Unknown 4 14%
Readers by discipline Count As %
Agricultural and Biological Sciences 8 29%
Medicine and Dentistry 6 21%
Neuroscience 5 18%
Biochemistry, Genetics and Molecular Biology 2 7%
Pharmacology, Toxicology and Pharmaceutical Science 1 4%
Other 1 4%
Unknown 5 18%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 9. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 11 October 2019.
All research outputs
#3,798,945
of 25,374,917 outputs
Outputs from Journal of Neural Transmission
#298
of 1,856 outputs
Outputs of similar age
#2,996
of 35,602 outputs
Outputs of similar age from Journal of Neural Transmission
#1
of 3 outputs
Altmetric has tracked 25,374,917 research outputs across all sources so far. Compared to these this one has done well and is in the 83rd percentile: it's in the top 25% of all research outputs ever tracked by Altmetric.
So far Altmetric has tracked 1,856 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 6.0. This one has done well, scoring higher than 82% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 35,602 tracked outputs that were published within six weeks on either side of this one in any source. This one has done well, scoring higher than 87% of its contemporaries.
We're also able to compare this research output to 3 others from the same source and published within six weeks on either side of this one. This one has scored higher than all of them