↓ Skip to main content

Transient Receptor Potential Ankyrin 1 (TRPA1) Mediates Lipopolysaccharide (LPS)-Induced Inflammatory Responses in Primary Human Osteoarthritic Fibroblast-Like Synoviocytes

Overview of attention for article published in Inflammation, January 2018
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age
  • High Attention Score compared to outputs of the same age and source (88th percentile)

Mentioned by

twitter
3 X users

Citations

dimensions_citation
28 Dimensions

Readers on

mendeley
28 Mendeley
Title
Transient Receptor Potential Ankyrin 1 (TRPA1) Mediates Lipopolysaccharide (LPS)-Induced Inflammatory Responses in Primary Human Osteoarthritic Fibroblast-Like Synoviocytes
Published in
Inflammation, January 2018
DOI 10.1007/s10753-017-0724-0
Pubmed ID
Authors

Songjiang Yin, Peimin Wang, Runlin Xing, Linrui Zhao, Xiaochen Li, Li Zhang, Yancheng Xiao

Abstract

Transient receptor potential ankyrin 1 (TRPA1) is a membrane-associated cation channel, widely expressed in neuronal and non-neuronal cells. Recently, emerging evidences suggested the crucial role of TRPA1 in the disease progression of osteoarthritis (OA). Therefore, we aimed to investigate whether TRPA1 mediate lipopolysaccharide (LPS)-induced inflammatory responses in primary human OA fibroblast-like synoviocytes (OA-FLS). The expression of TRPA1 in LPS-treated OA-FLS was assessed by polymerase chain reaction (PCR) and western blot (WB), and the functionality of TRPA1 channel by Ca2+ influx measurements. Meanwhile, production of interleukin (IL)-1β, tumor necrosis factor (TNF)-α, IL-6, matrix metalloproteinase (MMP)-1, and MMP-3 in LPS-treated cells was measured by immunoassay. Histological observation after inhibition of TRPA1 was also performed in rats with LPS-induced inflammatory arthritis. After being induced by LPS, the gene and protein expression of TRPA1 was increased in the time-dependent or dose-dependent manner. Meanwhile, Ca2+ influx mediated by TRPA1 in human OA-FLS was also enhanced. In addition, pharmacological inhibition and gene silencing of TRPA1 downregulated the production of IL-1β, TNF-α, IL-6, MMP-1, and MMP-3 in LPS-treated FLS. Finally, synovial inflammation and cartilage degeneration were also reduced by the TRPA1 antagonist. We found the LPS caused the increased functional expression of TRPA1, the activation of which involved in LPS-reduced inflammatory responses in primary human OA-FLS, and the inhibition of TRPA1 produces protective effect in LPS-induced arthritis.

X Demographics

X Demographics

The data shown below were collected from the profiles of 3 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 28 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 28 100%

Demographic breakdown

Readers by professional status Count As %
Student > Master 4 14%
Student > Ph. D. Student 4 14%
Student > Bachelor 2 7%
Student > Doctoral Student 2 7%
Student > Postgraduate 2 7%
Other 2 7%
Unknown 12 43%
Readers by discipline Count As %
Pharmacology, Toxicology and Pharmaceutical Science 3 11%
Neuroscience 3 11%
Medicine and Dentistry 3 11%
Biochemistry, Genetics and Molecular Biology 2 7%
Immunology and Microbiology 1 4%
Other 2 7%
Unknown 14 50%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 2. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 12 January 2018.
All research outputs
#14,963,216
of 23,015,156 outputs
Outputs from Inflammation
#447
of 1,060 outputs
Outputs of similar age
#256,661
of 443,116 outputs
Outputs of similar age from Inflammation
#2
of 17 outputs
Altmetric has tracked 23,015,156 research outputs across all sources so far. This one is in the 32nd percentile – i.e., 32% of other outputs scored the same or lower than it.
So far Altmetric has tracked 1,060 research outputs from this source. They receive a mean Attention Score of 2.7. This one has gotten more attention than average, scoring higher than 54% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 443,116 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 39th percentile – i.e., 39% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 17 others from the same source and published within six weeks on either side of this one. This one has done well, scoring higher than 88% of its contemporaries.