↓ Skip to main content

Genetic diversity of three surface protein genes in Plasmodium malariae from three Asian countries

Overview of attention for article published in Malaria Journal, January 2018
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age
  • Average Attention Score compared to outputs of the same age and source

Mentioned by

twitter
5 X users

Citations

dimensions_citation
10 Dimensions

Readers on

mendeley
53 Mendeley
Title
Genetic diversity of three surface protein genes in Plasmodium malariae from three Asian countries
Published in
Malaria Journal, January 2018
DOI 10.1186/s12936-018-2176-x
Pubmed ID
Authors

Suttipat Srisutham, Naowarat Saralamba, Kanlaya Sriprawat, Mayfong Mayxay, Frank Smithuis, Francois Nosten, Sasithon Pukrittayakamee, Nicholas P. J. Day, Arjen M. Dondorp, Mallika Imwong

Abstract

Genetic diversity of the three important antigenic proteins, namely thrombospondin-related anonymous protein (TRAP), apical membrane antigen 1 (AMA1), and 6-cysteine protein (P48/45), all of which are found in various developmental stages of Plasmodium parasites is crucial for targeted vaccine development. While studies related to the genetic diversity of these proteins are available for Plasmodium falciparum and Plasmodium vivax, barely enough information exists regarding Plasmodium malariae. The present study aims to demonstrate the genetic variations existing among these three genes in P. malariae by analysing their diversity at nucleotide and protein levels. Three surface protein genes were isolated from 45 samples collected in Thailand (N = 33), Myanmar (N = 8), and Lao PDR (N = 4), using conventional polymerase chain reaction (PCR) assay. Then, the PCR products were sequenced and analysed using BioEdit, MEGA6, and DnaSP programs. The average pairwise nucleotide diversities (π) of P. malariae trap, ama1, and p48/45 were 0.00169, 0.00413, and 0.00029, respectively. The haplotype diversities (Hd) of P. malariae trap, ama1, and p48/45 were 0.919, 0.946, and 0.130, respectively. Most of the nucleotide substitutions were non-synonymous, which indicated that the genetic variations of these genes were maintained by positive diversifying selection, thus, suggesting their role as a potential target of protective immune response. Amino acid substitutions of P. malariae TRAP, AMA1, and P48/45 could be categorized to 17, 20, and 2 unique amino-acid variants, respectively. For further vaccine development, carboxyl terminal of P48/45 would be a good candidate according to conserved amino acid at low genetic diversity (π = 0.2-0.3). High mutational diversity was observed in P. malariae trap and ama1 as compared to p48/45 in P. malariae samples isolated from Thailand, Myanmar, and Lao PDR. Taken together, these results suggest that P48/45 might be a good vaccine candidate against P. malariae infection because of its sufficiently low genetic diversity and highly conserved amino acids especially on the carboxyl end.

X Demographics

X Demographics

The data shown below were collected from the profiles of 5 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 53 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 53 100%

Demographic breakdown

Readers by professional status Count As %
Student > Master 13 25%
Student > Ph. D. Student 9 17%
Researcher 8 15%
Student > Bachelor 4 8%
Lecturer 3 6%
Other 7 13%
Unknown 9 17%
Readers by discipline Count As %
Biochemistry, Genetics and Molecular Biology 17 32%
Medicine and Dentistry 7 13%
Immunology and Microbiology 4 8%
Agricultural and Biological Sciences 4 8%
Computer Science 3 6%
Other 6 11%
Unknown 12 23%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 2. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 21 November 2018.
All research outputs
#14,655,993
of 24,580,204 outputs
Outputs from Malaria Journal
#3,614
of 5,786 outputs
Outputs of similar age
#231,706
of 453,305 outputs
Outputs of similar age from Malaria Journal
#71
of 111 outputs
Altmetric has tracked 24,580,204 research outputs across all sources so far. This one is in the 39th percentile – i.e., 39% of other outputs scored the same or lower than it.
So far Altmetric has tracked 5,786 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 6.9. This one is in the 34th percentile – i.e., 34% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 453,305 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 47th percentile – i.e., 47% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 111 others from the same source and published within six weeks on either side of this one. This one is in the 34th percentile – i.e., 34% of its contemporaries scored the same or lower than it.