↓ Skip to main content

An analysis of the global pharmacy workforce capacity trends from 2006 to 2012

Overview of attention for article published in Human Resources for Health, January 2018
Altmetric Badge

About this Attention Score

  • In the top 25% of all research outputs scored by Altmetric
  • High Attention Score compared to outputs of the same age (90th percentile)
  • Good Attention Score compared to outputs of the same age and source (75th percentile)

Mentioned by

policy
2 policy sources
twitter
22 X users
facebook
1 Facebook page

Citations

dimensions_citation
43 Dimensions

Readers on

mendeley
87 Mendeley
Title
An analysis of the global pharmacy workforce capacity trends from 2006 to 2012
Published in
Human Resources for Health, January 2018
DOI 10.1186/s12960-018-0267-y
Pubmed ID
Authors

Ian Bates, Christopher John, Priyanka Seegobin, Andreia Bruno

Abstract

Human resources for health are at a critical low. The World Health Organization estimates that the current shortage of health workers, including pharmacists, is in excess of 7.2 million worldwide and that, by 2035, the shortage will reach 12.9 million. Pharmacists, in particular, are lacking in the workforce in many countries. The International Pharmaceutical Federation (FIP) and academic partners have conducted periodic global pharmacy workforce surveys in 2006, 2009 and 2012 which have monitored and reported on the status of the pharmacy workforce at the country and territory levels. This current analysis is a synthesis of workforce capacity data from these date points to provide an overview of the global trends and changes to pharmacy workforce capacity over this time period. The methodology proceeded with accessing workforce capacity data collated in 2006, 2009 and 2012 held on file at the FIP Collaborating Centre. This data had previously been validated and made available to WHO Human Resources for Health. The data focused (due to limitations from 2006 databank) on pharmacist workforce capacity. Countries and territories were identified that had data available across at least two of the three time points (2006, 2009 and 2012). Missing time-point data for some countries (data gaps) were subject, where possible, to literature and online data searching to capture possible missing data. Country-level capacity data were plotted against time to identify trends coupled with comparative analysis of the trends. The countries and territories identified as having valid data for each of the time points 2006, 2009 and 2012 were present in all WHO regions, with Europe having the most countries with data available and South East Asia the fewest. All WHO regions have experienced an increase in the density of pharmacists (measured as number of pharmacists per 10 000 population) over the period 2006-2012. However, some countries show a reduction in the density of pharmacists. African countries show large relative increases in acceleration of capacity building but remain significantly behind in terms of absolute capacity per capita. South East Asian and Middle Eastern countries also show large proportional changes in pharmacist workforce. The global trend is an increase in workforce across all nations and regions, and this is a move in the right direction towards improved access to, and availability of, pharmaceutical expertise. However, there is still much to be done, with some regions and low-income countries still displaying a disproportionately low number of pharmacists on small overall capacity for delivering pharmacy services.

X Demographics

X Demographics

The data shown below were collected from the profiles of 22 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 87 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 87 100%

Demographic breakdown

Readers by professional status Count As %
Student > Master 16 18%
Unspecified 9 10%
Student > Ph. D. Student 6 7%
Researcher 5 6%
Other 4 5%
Other 17 20%
Unknown 30 34%
Readers by discipline Count As %
Pharmacology, Toxicology and Pharmaceutical Science 17 20%
Unspecified 9 10%
Medicine and Dentistry 9 10%
Nursing and Health Professions 7 8%
Computer Science 5 6%
Other 10 11%
Unknown 30 34%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 20. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 27 November 2023.
All research outputs
#1,863,229
of 25,382,440 outputs
Outputs from Human Resources for Health
#176
of 1,261 outputs
Outputs of similar age
#42,242
of 450,898 outputs
Outputs of similar age from Human Resources for Health
#6
of 24 outputs
Altmetric has tracked 25,382,440 research outputs across all sources so far. Compared to these this one has done particularly well and is in the 92nd percentile: it's in the top 10% of all research outputs ever tracked by Altmetric.
So far Altmetric has tracked 1,261 research outputs from this source. They typically receive a lot more attention than average, with a mean Attention Score of 13.3. This one has done well, scoring higher than 86% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 450,898 tracked outputs that were published within six weeks on either side of this one in any source. This one has done particularly well, scoring higher than 90% of its contemporaries.
We're also able to compare this research output to 24 others from the same source and published within six weeks on either side of this one. This one has done well, scoring higher than 75% of its contemporaries.