↓ Skip to main content

Core-defect reduction in ZnO nanorods by cobalt incorporation

Overview of attention for article published in Nanotechnology, June 2017
Altmetric Badge

Mentioned by

twitter
1 X user

Citations

dimensions_citation
10 Dimensions

Readers on

mendeley
9 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Core-defect reduction in ZnO nanorods by cobalt incorporation
Published in
Nanotechnology, June 2017
DOI 10.1088/1361-6528/aa716a
Pubmed ID
Authors

A Savoyant, H Alnoor, O Pilone, O Nur, M Willander

Abstract

Zinc oxide (ZnO) nanorods grown by the low-temperature (90°C) aqueous chemical method with different cobalt concentration within the synthesis solution (from 0% to 15%), are studied by electron paramagnetic resonance (EPR), just above the liquid helium temperature. The anisotropic spectra of substitutional Co2+ reveal a high crystalline quality and orientation of the NRs, as well as the probable presence of a secondary disordered phase of ZnO:Co. The analysis of the EPR spectra indicates that the disappearance of the paramagnetic native core-defect (CD) at g~1.96 is correlated with the apparition of the Co2+ ions lines, suggesting a gradual neutralization of the former by the latter. We show that only a little amount of cobalt in the synthesis solution (about 0.2%) is necessary to suppress almost all these paramagnetic CDs. This gives insight in the experimentally observed improvement of the crystal quality of diluted ZnO:Co nanorods, as well as into the control of paramagnetic defects in ZnO nanostructures.

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 9 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 9 100%

Demographic breakdown

Readers by professional status Count As %
Researcher 2 22%
Student > Ph. D. Student 2 22%
Other 1 11%
Student > Bachelor 1 11%
Student > Master 1 11%
Other 1 11%
Unknown 1 11%
Readers by discipline Count As %
Physics and Astronomy 4 44%
Materials Science 2 22%
Energy 1 11%
Chemistry 1 11%
Unknown 1 11%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 29 November 2021.
All research outputs
#20,461,148
of 23,018,998 outputs
Outputs from Nanotechnology
#3,882
of 4,537 outputs
Outputs of similar age
#275,548
of 316,307 outputs
Outputs of similar age from Nanotechnology
#43
of 54 outputs
Altmetric has tracked 23,018,998 research outputs across all sources so far. This one is in the 1st percentile – i.e., 1% of other outputs scored the same or lower than it.
So far Altmetric has tracked 4,537 research outputs from this source. They receive a mean Attention Score of 4.5. This one is in the 1st percentile – i.e., 1% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 316,307 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 54 others from the same source and published within six weeks on either side of this one. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.