↓ Skip to main content

Direct repression of IGF2 is implicated in the anti-angiogenic function of microRNA-210 in human retinal endothelial cells

Overview of attention for article published in Angiogenesis, January 2018
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age
  • Above-average Attention Score compared to outputs of the same age and source (61st percentile)

Mentioned by

twitter
3 X users

Citations

dimensions_citation
12 Dimensions

Readers on

mendeley
8 Mendeley
Title
Direct repression of IGF2 is implicated in the anti-angiogenic function of microRNA-210 in human retinal endothelial cells
Published in
Angiogenesis, January 2018
DOI 10.1007/s10456-018-9597-6
Pubmed ID
Authors

Qinbo Yang, Peiwei Wang, Xiaoye Du, Wenjian Wang, Teng Zhang, Yu Chen

Abstract

Pathological angiogenesis leads to the development of retinal vasculopathies and causes severe vision impairment. Increased understanding of the mechanisms underlying the angiogenic behavior of retinal endothelial cells helps provide new insights for developing treatment of retinal vasculopathies. Pro-angiogenic function of miR-210 has previously been identified. However, the functional implication of miR-210 in retinal endothelial cells remains unknown. Human retinal microvascular endothelial cells (HRECs) were employed to investigate the impact of miR-210 on the angiogenic capacity of retinal endothelial cells. It was observed that without affecting the viability of HRECs, miR-210 significantly suppressed the migration and capillary-like tube formation in HRECs. Moreover, pro-angiogenic insulin growth factor 2 (IGF2) was newly identified as a direct target of miR-210 in HRECs. MiR-210 decreased the expression of IGF2 at both mRNA and protein levels in HRECs. IGF2-simulated activation of p38 MAPK was attenuated by miR-210 in HRECs. Recombinant IGF2 protein rescued miR-210-induced impairment of tube formation in HRECs. Therefore, in contrast to the previously reported pro-angiogenic function of miR-210, the current work reveals novel anti-angiogenic activity of miR-210 in HRECs. Furthermore, IGF2 is identified for the first time as a direct target of miR-210 in HRECs, adding new mechanistic insights into the expression regulation of pro-angiogenic IGF2 in human retinal endothelial cells. The current work helps increase the understanding of regulatory mechanisms underlying retinal endothelial cell physiology, justifying further evaluation for the therapeutic implications of miR-210/IGF2 interaction in the treatment of related retinal vasculopathies.

X Demographics

X Demographics

The data shown below were collected from the profiles of 3 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 8 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 8 100%

Demographic breakdown

Readers by professional status Count As %
Student > Master 2 25%
Student > Ph. D. Student 1 13%
Professor 1 13%
Unknown 4 50%
Readers by discipline Count As %
Medicine and Dentistry 2 25%
Sports and Recreations 1 13%
Biochemistry, Genetics and Molecular Biology 1 13%
Unknown 4 50%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 2. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 25 October 2019.
All research outputs
#14,965,143
of 23,018,998 outputs
Outputs from Angiogenesis
#336
of 538 outputs
Outputs of similar age
#274,812
of 473,646 outputs
Outputs of similar age from Angiogenesis
#4
of 13 outputs
Altmetric has tracked 23,018,998 research outputs across all sources so far. This one is in the 32nd percentile – i.e., 32% of other outputs scored the same or lower than it.
So far Altmetric has tracked 538 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 6.4. This one is in the 34th percentile – i.e., 34% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 473,646 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 39th percentile – i.e., 39% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 13 others from the same source and published within six weeks on either side of this one. This one has gotten more attention than average, scoring higher than 61% of its contemporaries.