↓ Skip to main content

Effects of bisphenol A on ovarian follicular development and female germline stem cells

Overview of attention for article published in Archives of Toxicology, January 2018
Altmetric Badge

Mentioned by

twitter
1 X user

Citations

dimensions_citation
40 Dimensions

Readers on

mendeley
44 Mendeley
Title
Effects of bisphenol A on ovarian follicular development and female germline stem cells
Published in
Archives of Toxicology, January 2018
DOI 10.1007/s00204-018-2167-2
Pubmed ID
Authors

Xiaoqin Zhu, Geng G. Tian, Baoli Yu, Yanzhou Yang, Ji Wu

Abstract

Bisphenol A (BPA), one of the most frequently detected emerging pollutants in the environment, has been implicated in adverse effects in male and female reproduction at extremely low concentrations. This study aimed to investigate the effects and potential mechanism of BPA on mouse ovarian follicular development and female germline stem cells (FGSCs). Female CD-1 adult mice were administered gradient concentrations of BPA (12.5, 25, and 50 mg/kg/day) by intraperitoneal injection. We found that the number of atretic ovarian follicles was significantly increased at high BPA concentrations. Additionally, the numbers of primordial follicles, primary follicles, and corpus luteum (CL) were significantly reduced at high BPA concentrations. Interestingly, the number of FGSCs was remarkably reduced in BPA-treated ovaries. Furthermore, the increased apoptotic rate of FGSCs in vitro was triggered by BPA accompanied by increased BPA concentrations. To investigate the mechanism of BPA in ovarian follicular development, 193 differentially expressed proteins were identified in BPA-treated ovaries by the isobaric tags for relative and absolute quantification-coupled 2D liquid chromatography-mass spectrometry technique. A total of 106 proteins were downregulated and 85 proteins were upregulated. Among these proteins, the apoptosis-related protein SAFB-like transcriptional modulator (SLTM) was remarkably upregulated, and this result was consistent with western blotting. Taken together, our results suggest that an ovarian follicular development, especially, the development of primordial follicles, primary follicles, and the CL, is inhibited by high BPA concentrations, and the ovarian follicle atresia is initiated by BPA through upregulated expression of SLTM. Furthermore, BPA induces apoptosis of cultured FGSCs. The effect of BPA on ovarian follicular development and FGSCs, especially the effect on FGSCs, suggests a novel mechanism of how BPA causes female infertility.

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 44 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 44 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 8 18%
Student > Bachelor 8 18%
Student > Master 5 11%
Researcher 3 7%
Student > Doctoral Student 2 5%
Other 6 14%
Unknown 12 27%
Readers by discipline Count As %
Biochemistry, Genetics and Molecular Biology 10 23%
Medicine and Dentistry 3 7%
Environmental Science 3 7%
Nursing and Health Professions 2 5%
Philosophy 1 2%
Other 7 16%
Unknown 18 41%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 31 January 2018.
All research outputs
#20,461,148
of 23,018,998 outputs
Outputs from Archives of Toxicology
#2,380
of 2,653 outputs
Outputs of similar age
#378,896
of 441,593 outputs
Outputs of similar age from Archives of Toxicology
#21
of 24 outputs
Altmetric has tracked 23,018,998 research outputs across all sources so far. This one is in the 1st percentile – i.e., 1% of other outputs scored the same or lower than it.
So far Altmetric has tracked 2,653 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 6.2. This one is in the 1st percentile – i.e., 1% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 441,593 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 24 others from the same source and published within six weeks on either side of this one. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.