↓ Skip to main content

Nature-Inspired Algorithm for Training Multilayer Perceptron Networks in e-health Environments for High-Risk Pregnancy Care

Overview of attention for article published in Journal of Medical Systems, February 2018
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age and source

Mentioned by

twitter
2 X users

Citations

dimensions_citation
19 Dimensions

Readers on

mendeley
93 Mendeley
Title
Nature-Inspired Algorithm for Training Multilayer Perceptron Networks in e-health Environments for High-Risk Pregnancy Care
Published in
Journal of Medical Systems, February 2018
DOI 10.1007/s10916-017-0887-0
Pubmed ID
Authors

Mário W. L. Moreira, Joel J. P. C. Rodrigues, Neeraj Kumar, Jalal Al-Muhtadi, Valery Korotaev

Abstract

Nature presents an infinite source of inspiration for computational models and paradigms, in particular for researchers associated with the area known as natural computing. The simultaneous optimization of the architectures and weights of artificial neural networks (ANNs) through biologically inspired algorithms is an interesting approach for obtaining efficient networks with relatively good generalization capabilities. This methodology constitutes a concordance between a low structural complexity model and low training error rates. Currently, complexity and high error rates are the leading issues faced in the development of clinical decision support systems (CDSSs) for pregnancy care. Hence, in this paper the use of a biologically inspired technique, known as particle swarm optimization (PSO), is proposed for reducing the computational cost of the ANN-based method referred to as the multilayer perceptron (MLP), without reducing its precision rate. The results show that the PSO algorithm is able to improve computational model performance, showing lower validation error rates than the conventional approach. This technique can select the best parameters and provide an efficient solution for training the MLP algorithm. The proposed nature-inspired algorithm and its parameter adjustment method improve the performance and precision of CDSSs. This technique can be applied in electronic health (e-health) systems as a useful tool for handling uncertainty in the decision-making process related to high-risk pregnancy. The proposed method outperformed, on average, other approaches by 26.4% in terms of precision and 14.9% in terms of the true positive ratio (TPR), and showed a reduction of 35.4% in the false positive ratio (FPR). Furthermore, this method was superior to the MLP algorithm in terms of precision and area under the receiver operating characteristic curve by 2.3 and 10.2%, respectively, when applied to the delivery outcome for pregnant women.

X Demographics

X Demographics

The data shown below were collected from the profiles of 2 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 93 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 93 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 12 13%
Student > Master 11 12%
Researcher 8 9%
Student > Doctoral Student 8 9%
Student > Bachelor 6 6%
Other 14 15%
Unknown 34 37%
Readers by discipline Count As %
Computer Science 16 17%
Medicine and Dentistry 10 11%
Engineering 6 6%
Social Sciences 5 5%
Nursing and Health Professions 4 4%
Other 13 14%
Unknown 39 42%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 03 February 2018.
All research outputs
#15,863,447
of 23,567,572 outputs
Outputs from Journal of Medical Systems
#677
of 1,181 outputs
Outputs of similar age
#272,601
of 442,605 outputs
Outputs of similar age from Journal of Medical Systems
#15
of 33 outputs
Altmetric has tracked 23,567,572 research outputs across all sources so far. This one is in the 22nd percentile – i.e., 22% of other outputs scored the same or lower than it.
So far Altmetric has tracked 1,181 research outputs from this source. They receive a mean Attention Score of 4.5. This one is in the 34th percentile – i.e., 34% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 442,605 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 29th percentile – i.e., 29% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 33 others from the same source and published within six weeks on either side of this one. This one is in the 45th percentile – i.e., 45% of its contemporaries scored the same or lower than it.