↓ Skip to main content

Effects of temperature and melatonin on day–night expression patterns of arginine vasotocin and isotocin mRNA in the diencephalon of a temperate wrasse Halichoeres tenuispinis

Overview of attention for article published in Fish Physiology and Biochemistry, February 2018
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age
  • High Attention Score compared to outputs of the same age and source (83rd percentile)

Mentioned by

twitter
5 X users

Citations

dimensions_citation
1 Dimensions

Readers on

mendeley
20 Mendeley
Title
Effects of temperature and melatonin on day–night expression patterns of arginine vasotocin and isotocin mRNA in the diencephalon of a temperate wrasse Halichoeres tenuispinis
Published in
Fish Physiology and Biochemistry, February 2018
DOI 10.1007/s10695-018-0471-7
Pubmed ID
Authors

Selma Bouchekioua, Sung-Pyo Hur, Yuki Takeuchi, Young-Don Lee, Akihiro Takemura

Abstract

Most wrasses are protogynous species that swim to feed, reproduce during the daytime, and bury themselves under the sandy bottom at night. In temperate and subtropical wrasses, low temperature influences emergence from the sandy bottom in the morning, and induces a hibernation-like state in winter. We cloned and characterized the prohormone complementary DNAs (cDNAs) of arginine vasotocin (AVT) and isotocin (IT) in a temperate wrasse (Halichoeres tenuispinis) and examined the effects of day/night and temperature on their expression in the diencephalon, because these neurohypophysial peptides are related to the sex behavior of wrasses. The full-length cDNAs of pro-AVT and pro-IT were 938 base pairs (154 amino acids) and 759 base pairs (156 amino acids) in length, respectively. Both pro-peptides contained a signal sequence followed by the respective hormones and neurophysin connected by a Gly-Lys-Arg bridge. Reverse-transcription polymerase chain reaction (RT-PCR) revealed that pro-AVT mRNA expression was specifically observed in the diencephalon, whereas pro-IT mRNA expression was seen in the whole brain. Quantitative RT-PCR revealed that the mRNA abundance of pro-AVT and pro-IT was higher at midday (zeitgeber time 6; ZT6) than at midnight (ZT18) under 12 h light and 12 h darkness (LD 12:12) conditions, but not under constant light. Intraperitoneal injection of melatonin decreased the mRNA abundance of pro-AVT, but not of pro-IT. When fish were reared under LD 12:12 conditions at 25, 20, and 15 °C, day high and night low mRNA expressions of pro-AVT and pro-IT were maintained. A field survey revealed seasonal variation in the number of swimming fish at observatory sites; many fish emerged from the sandy bottom in summer, but not in winter, suggesting a hibernation-like state under the sandy bottom under low temperature conditions. We conclude that the day-night fluctuation of pro-AVT and pro-IT mRNA abundance in the brain is not affected by temperature and repeated under the sandy bottom in winter.

X Demographics

X Demographics

The data shown below were collected from the profiles of 5 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 20 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 20 100%

Demographic breakdown

Readers by professional status Count As %
Researcher 5 25%
Lecturer 2 10%
Student > Bachelor 2 10%
Professor 2 10%
Student > Ph. D. Student 1 5%
Other 2 10%
Unknown 6 30%
Readers by discipline Count As %
Agricultural and Biological Sciences 8 40%
Psychology 2 10%
Neuroscience 1 5%
Medicine and Dentistry 1 5%
Unknown 8 40%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 2. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 02 October 2018.
All research outputs
#14,374,920
of 23,020,670 outputs
Outputs from Fish Physiology and Biochemistry
#196
of 867 outputs
Outputs of similar age
#239,126
of 437,326 outputs
Outputs of similar age from Fish Physiology and Biochemistry
#4
of 36 outputs
Altmetric has tracked 23,020,670 research outputs across all sources so far. This one is in the 35th percentile – i.e., 35% of other outputs scored the same or lower than it.
So far Altmetric has tracked 867 research outputs from this source. They receive a mean Attention Score of 1.6. This one has gotten more attention than average, scoring higher than 74% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 437,326 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 42nd percentile – i.e., 42% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 36 others from the same source and published within six weeks on either side of this one. This one has done well, scoring higher than 83% of its contemporaries.