↓ Skip to main content

Increased expression of the stromal fibroblast-secreted periostin in canine squamous cell carcinomas

Overview of attention for article published in Journal of Veterinary Medical Science, February 2018
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age
  • Good Attention Score compared to outputs of the same age and source (78th percentile)

Mentioned by

twitter
4 X users

Citations

dimensions_citation
7 Dimensions

Readers on

mendeley
9 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Increased expression of the stromal fibroblast-secreted periostin in canine squamous cell carcinomas
Published in
Journal of Veterinary Medical Science, February 2018
DOI 10.1292/jvms.17-0647
Pubmed ID
Authors

Takayuki MINESHIGE, Kikumi OGIHARA, Junichi KAMIIE, Go SUGAHARA, James Kenn CHAMBERS, Kazuyuki UCHIDA, Hiroo MADARAME, Kinji SHIROTA

Abstract

Canine squamous cell carcinoma (SCC) shows highly invasive and locally destructive growth. In animal models and human cancer cases, periostin plays a critical role in the enhancement of cancer growth; however, the mechanism of involvement in canine cancers remains unknown. The aim of this study was to examine the involvement of periostin in the pathophysiology of SCC in dogs. We examined the localization of periostin and periostin-producing cells in 20 SCC and three squamous papilloma specimens. Furthermore, we focused on transforming growth factor (TGF)-β1, which was assumed to be an inducing factor of periostin, using culture cells. By immunohistochemistry, limited periostin expression in the stroma was observed in all squamous papillomas. In SCC, periostin protein diffusely expressed at the tumor invasion front of cancer growth. In situ hybridization revealed that periostin mRNA was expressed in the stromal fibroblasts in SCC. In vitro analysis determined that canine SCC cells expressed significantly higher levels of TGF-β1 mRNA compared with canine keratinocytes. In addition, recombinant TGF-β1 induced secretion of periostin from cultured dermal fibroblasts. These data suggest that periostin produced by stromal fibroblasts may be involved in the pathophysiology of canine SCC. TGF-β1 derived from SCC cells may stimulate fibroblasts to produce periostin.

X Demographics

X Demographics

The data shown below were collected from the profiles of 4 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 9 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 9 100%

Demographic breakdown

Readers by professional status Count As %
Student > Master 4 44%
Professor > Associate Professor 1 11%
Professor 1 11%
Unknown 3 33%
Readers by discipline Count As %
Veterinary Science and Veterinary Medicine 4 44%
Biochemistry, Genetics and Molecular Biology 2 22%
Unknown 3 33%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 2. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 28 March 2018.
All research outputs
#16,725,651
of 25,382,440 outputs
Outputs from Journal of Veterinary Medical Science
#1,215
of 3,547 outputs
Outputs of similar age
#269,288
of 446,116 outputs
Outputs of similar age from Journal of Veterinary Medical Science
#16
of 78 outputs
Altmetric has tracked 25,382,440 research outputs across all sources so far. This one is in the 32nd percentile – i.e., 32% of other outputs scored the same or lower than it.
So far Altmetric has tracked 3,547 research outputs from this source. They receive a mean Attention Score of 2.5. This one has gotten more attention than average, scoring higher than 62% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 446,116 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 36th percentile – i.e., 36% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 78 others from the same source and published within six weeks on either side of this one. This one has done well, scoring higher than 78% of its contemporaries.