↓ Skip to main content

Ratiometric Phosphorescent Probe for Thallium in Serum, Water, and Soil Samples Based on Long-Lived, Spectrally Resolved, Mn-Doped ZnSe Quantum Dots and Carbon Dots

Overview of attention for article published in Analytical Chemistry, February 2018
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age and source

Mentioned by

twitter
2 X users

Citations

dimensions_citation
63 Dimensions

Readers on

mendeley
31 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Ratiometric Phosphorescent Probe for Thallium in Serum, Water, and Soil Samples Based on Long-Lived, Spectrally Resolved, Mn-Doped ZnSe Quantum Dots and Carbon Dots
Published in
Analytical Chemistry, February 2018
DOI 10.1021/acs.analchem.7b05365
Pubmed ID
Authors

Xiaomei Lu, Jinyi Zhang, Ya-Ni Xie, Xinfeng Zhang, Xiaoming Jiang, Xiandeng Hou, Peng Wu

Abstract

Thallium (Tl) is an extremely toxic heavy metal and exists in very low concentrations in the environment, but its sensing is largely underexplored as compared to its neighboring elements in the periodic table (especially mercury and lead). In this work, we developed ratiometric phosphorescent nanoprobe for thallium detection based on Mn-doped ZnSe quantum dots (QDs) and water-soluble carbon dots (C-dots). Upon excitation with 360 nm, Mn-doped ZnSe QDs and C-dots can emit long-lived and spectrally-resolved phosphorescence at 580 nm and 440 nm, respectively. In the presence of thallium, the phosphorescence emission from Mn-doped ZnSe QDs could be selectively quenched, while that from C-dots retained unchanged. Therefore, a ratiometric phosphorescent probe was thus developed, which can eliminate the potential influence from both background fluorescence and other analyte-independent external environment factors. Several other heavy metal ions caused interferences to thallium detection, but could be efficiently masked with EDTA. The proposed method offered a detection limit of 1 ppb, which is among the most sensitive probes ever reported. Successful application of this method for thallium detection in biological serum and environmental water samples was demonstrated.

X Demographics

X Demographics

The data shown below were collected from the profiles of 2 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 31 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 31 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 7 23%
Student > Master 6 19%
Student > Bachelor 3 10%
Student > Doctoral Student 3 10%
Researcher 2 6%
Other 1 3%
Unknown 9 29%
Readers by discipline Count As %
Chemistry 10 32%
Agricultural and Biological Sciences 2 6%
Materials Science 2 6%
Immunology and Microbiology 1 3%
Environmental Science 1 3%
Other 2 6%
Unknown 13 42%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 08 February 2018.
All research outputs
#15,490,822
of 23,020,670 outputs
Outputs from Analytical Chemistry
#20,119
of 26,623 outputs
Outputs of similar age
#268,484
of 437,836 outputs
Outputs of similar age from Analytical Chemistry
#239
of 524 outputs
Altmetric has tracked 23,020,670 research outputs across all sources so far. This one is in the 22nd percentile – i.e., 22% of other outputs scored the same or lower than it.
So far Altmetric has tracked 26,623 research outputs from this source. They receive a mean Attention Score of 4.7. This one is in the 18th percentile – i.e., 18% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 437,836 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 29th percentile – i.e., 29% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 524 others from the same source and published within six weeks on either side of this one. This one is in the 44th percentile – i.e., 44% of its contemporaries scored the same or lower than it.