↓ Skip to main content

Synthesis and application of imidazolium-based ionic liquids as extraction solvent for pretreatment of triazole fungicides in water samples

Overview of attention for article published in Analytical & Bioanalytical Chemistry, January 2018
Altmetric Badge

Mentioned by

twitter
1 X user

Citations

dimensions_citation
22 Dimensions

Readers on

mendeley
27 Mendeley
Title
Synthesis and application of imidazolium-based ionic liquids as extraction solvent for pretreatment of triazole fungicides in water samples
Published in
Analytical & Bioanalytical Chemistry, January 2018
DOI 10.1007/s00216-017-0820-x
Pubmed ID
Authors

Jiale Yang, Chen Fan, Dandan Kong, Gang Tang, Wenbing Zhang, Hongqiang Dong, You Liang, Deng Wang, Yongsong Cao

Abstract

Five novel ionic liquids (ILs), 1,3-dibutylimidazolium bromide [BBMIm][Br], 1-pentyl-3-butylimidazolium bromide [BPMIm][Br], 1-hexyl-3-butylimidazolium bromide [BHMIm][Br], 1,1'-(butane-1,4-diyl)bis(3-butylimidazolium) bromide [C4(BMIm)2][Br2], and 1,1'-(butane-1,4-diyl)bis(3-methylimidazolium) bromide [C4(MIm)2][Br2], were prepared and used in situ to react with bis(trifluoromethane)sulfonamide lithium salt to extract the myclobutanil, tebuconazole, cyproconazole, and prothioconazole from water samples. The results showed that mono-cationic ILs had much better recovery than dicationic ILs, and mono-imidazolium IL bearing butyl groups at N-1 and N-3 sites had the best recovery. When the length of the alkyl substituent group was more than four carbons at N-3 site, the recovery decreased with increase of alkyl chain length of 1-butylimidazolium IL. The extraction efficiency order of triazoles from high to low was [BBMIm][Br], [BPMIm][Br], [BHMIm][Br], [BMIm][Br] (1-butyl-3-methylimidazolium bromide), [C4(BMIm)2]Br2, [C4(MIm)2]Br2. An in situ ionic liquid dispersive liquid-liquid microextraction combined with ultrasmall superparamagnetic Fe3O4 was established as a pretreatment method for enrichment of triazole fungicides in water samples by using the synthetic [BBMIm][Br] as the cationic IL and used to detect analytes followed by high-performance liquid chromatography. Under the optimized conditions, the proposed method showed a good linearity within a range of 5-250 μg L-1, with the determination coefficient (r2) varying from 0.998 to 0.999. High mean enrichment factors were achieved ranging from 187 to 323, and the recoveries of the target analytes from real water samples at spiking levels of 10.0, 20.0, and 50.0 μg L-1 were between 70.1% and 115.0%. The limits of detection for the analytes were 0.74-1.44 μg L-1, and the intra-day relative standard deviations varied from 5.23% to 8.65%. The proposed method can be further applied to analyze and monitor pesticides in other related samples. Graphical Abstract The scheme of the in-situ DLLME method for the determination of triazoles using the imidazolium-based ionic liquids.

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 27 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 27 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 7 26%
Researcher 4 15%
Lecturer 3 11%
Student > Master 2 7%
Student > Bachelor 1 4%
Other 5 19%
Unknown 5 19%
Readers by discipline Count As %
Chemistry 14 52%
Chemical Engineering 2 7%
Engineering 2 7%
Environmental Science 2 7%
Unspecified 1 4%
Other 0 0%
Unknown 6 22%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 12 February 2018.
All research outputs
#22,764,772
of 25,382,440 outputs
Outputs from Analytical & Bioanalytical Chemistry
#7,543
of 9,619 outputs
Outputs of similar age
#389,513
of 449,549 outputs
Outputs of similar age from Analytical & Bioanalytical Chemistry
#128
of 178 outputs
Altmetric has tracked 25,382,440 research outputs across all sources so far. This one is in the 1st percentile – i.e., 1% of other outputs scored the same or lower than it.
So far Altmetric has tracked 9,619 research outputs from this source. They receive a mean Attention Score of 3.1. This one is in the 1st percentile – i.e., 1% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 449,549 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 178 others from the same source and published within six weeks on either side of this one. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.