↓ Skip to main content

Modeling the Interplay Between Tumor Volume Regression and Oxygenation in Uterine Cervical Cancer During Radiotherapy Treatment

Overview of attention for article published in IEEE Journal of Biomedical and Health Informatics, January 2015
Altmetric Badge

Mentioned by

twitter
1 X user

Citations

dimensions_citation
8 Dimensions

Readers on

mendeley
23 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Modeling the Interplay Between Tumor Volume Regression and Oxygenation in Uterine Cervical Cancer During Radiotherapy Treatment
Published in
IEEE Journal of Biomedical and Health Informatics, January 2015
DOI 10.1109/jbhi.2015.2398512
Pubmed ID
Authors

Antonella Belfatto, Marco Riboldi, Delia Ciardo, Federica Cattani, Agnese Cecconi, Roberta Lazzari, Barbara Alicja Jereczek-Fossa, Roberto Orecchia, Guido Baroni, Pietro Cerveri

Abstract

This paper describes a patient-specific mathematical model to predict the evolution of uterine cervical tumors at a macroscopic scale, during fractionated external radiotherapy. The model provides estimates of tumor re-growth and dead-cell reabsorption, incorporating the interplay between tumor regression rate and radiosensitivity, as a function of the tumor oxygenation level. Model parameters were estimated by minimizing the difference between predicted and measured tumor volumes, these latter being obtained from a set of 154 serial cone-beam computed tomography (CBCT) scans acquired on 16 patients along the course of the therapy. The model stratified patients according to two different estimated dynamics of dead-cell removal and to the predicted initial value of the tumor oxygenation. The comparison with a simpler model demonstrated an improvement in fitting properties of this approach (fitting error average value <5%, p<0.01), especially in case of tumor late responses, which can hardly be handled by models entailing a constant radiosensitivity, failing to model changes from initial severe hypoxia to aerobic conditions during the treatment course. The model predictive capabilities suggest the need of clustering patients accounting for cancer cell-line, tumor staging, as well as microenvironment conditions (e.g. oxygenation level).

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 23 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 23 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 7 30%
Student > Master 4 17%
Student > Bachelor 3 13%
Professor 1 4%
Lecturer > Senior Lecturer 1 4%
Other 2 9%
Unknown 5 22%
Readers by discipline Count As %
Engineering 6 26%
Medicine and Dentistry 5 22%
Nursing and Health Professions 2 9%
Biochemistry, Genetics and Molecular Biology 1 4%
Mathematics 1 4%
Other 1 4%
Unknown 7 30%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 04 February 2015.
All research outputs
#22,760,732
of 25,377,790 outputs
Outputs from IEEE Journal of Biomedical and Health Informatics
#1,572
of 1,825 outputs
Outputs of similar age
#309,581
of 361,506 outputs
Outputs of similar age from IEEE Journal of Biomedical and Health Informatics
#21
of 24 outputs
Altmetric has tracked 25,377,790 research outputs across all sources so far. This one is in the 1st percentile – i.e., 1% of other outputs scored the same or lower than it.
So far Altmetric has tracked 1,825 research outputs from this source. They receive a mean Attention Score of 4.8. This one is in the 1st percentile – i.e., 1% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 361,506 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 24 others from the same source and published within six weeks on either side of this one. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.