↓ Skip to main content

Flavopiridol inhibits TGF-β-stimulated biglycan synthesis by blocking linker region phosphorylation and nuclear translocation of Smad2

Overview of attention for article published in The Journal of Pharmacology and Experimental Therapeutics, February 2018
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age
  • Average Attention Score compared to outputs of the same age and source

Mentioned by

twitter
2 X users

Citations

dimensions_citation
24 Dimensions

Readers on

mendeley
21 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Flavopiridol inhibits TGF-β-stimulated biglycan synthesis by blocking linker region phosphorylation and nuclear translocation of Smad2
Published in
The Journal of Pharmacology and Experimental Therapeutics, February 2018
DOI 10.1124/jpet.117.244483
Pubmed ID
Authors

Muhamad A Rostam, Aravindra Shajimoon, Danielle Kamato, Partha Mitra, Terrence J Piva, Robel Getachew, Yingnan Cao, Wenhua Zheng, Narin Osman, Peter J Little

Abstract

Transforming Growth Factor (TGF) β is a pleiotropic growth factor implicated in the development of atherosclerosis for its role in mediating glycosaminoglycan (GAG) chain hyperelongation on the proteoglycan biglycan, a phenomenon that leads to increased binding of atherogenic lipoproteins in the wall of blood vessels. TGF-β signalling pathway components leading to the modification of GAG chains on biglcyan are therefore potential targets for the treatment of atherosclerosis. Phosphorylation of the transcription factor Smad has emerged as a critical step in the signalling pathways that control the synthesis of biglycan, both the core protein and the GAG chains. We have previously shown that flavopiridol, a well known cyclin dependent kinase (CDK) inhibitor inhibited biglycan synthesis. We have used flavopiridol to study the role of linker region phosphorylation in the TGF-β-stimulated synthesis of biglycan. We used radiosulfate incorporation and SDS PAGE to assess proteoglycan synthesis; RT PCR to assess gene expression and chromatin immunoprecipitation (ChIP) to assess the binding of phosphorylated Smads to the promoter region of GAG synthesis genes. Flavopiridol blocked TGF-β-stimulated synthesis of mRNA for the GAG synthesizing enzymes, chondroitin 4-sulfotransferase (C4ST-1), chondroitin sulfate synthase-1 (ChSy-1), and xylosyltransferase-1 (XT-1); as well as biglycan core protein mRNA and protein expression. The incorporation of radiosulfate into proteoglycans stimulated by TGF-β as well as GAG hyperelongation were also blocked by flavopiridol. Flavopiridol blocked TGF-β-stimulated Smad2 phosphorylation at both the serine triplet and the isolated threonine residue in the linker region. The binding of polyphosphorylated Smad to the promoter region of the C4ST-1 and ChSy-1 genes was stimulated by TGF-β and this response was blocked by flavopiridol demonstrating that linker region phosphorylated Smad can pass to the nucleus and positively regulate transcription. These results demonstrate the validity of the kinases, which phosphorylate the Smad linker region as potential target(s) for the development of a therapeutic agent to prevent atherosclerosis.

X Demographics

X Demographics

The data shown below were collected from the profiles of 2 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 21 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 21 100%

Demographic breakdown

Readers by professional status Count As %
Student > Bachelor 3 14%
Researcher 3 14%
Other 2 10%
Professor 2 10%
Student > Ph. D. Student 2 10%
Other 2 10%
Unknown 7 33%
Readers by discipline Count As %
Biochemistry, Genetics and Molecular Biology 6 29%
Medicine and Dentistry 2 10%
Agricultural and Biological Sciences 2 10%
Pharmacology, Toxicology and Pharmaceutical Science 1 5%
Veterinary Science and Veterinary Medicine 1 5%
Other 1 5%
Unknown 8 38%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 2. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 18 February 2021.
All research outputs
#16,725,651
of 25,382,440 outputs
Outputs from The Journal of Pharmacology and Experimental Therapeutics
#4,282
of 5,550 outputs
Outputs of similar age
#272,729
of 451,567 outputs
Outputs of similar age from The Journal of Pharmacology and Experimental Therapeutics
#20
of 39 outputs
Altmetric has tracked 25,382,440 research outputs across all sources so far. This one is in the 32nd percentile – i.e., 32% of other outputs scored the same or lower than it.
So far Altmetric has tracked 5,550 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 6.1. This one is in the 20th percentile – i.e., 20% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 451,567 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 36th percentile – i.e., 36% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 39 others from the same source and published within six weeks on either side of this one. This one is in the 43rd percentile – i.e., 43% of its contemporaries scored the same or lower than it.