↓ Skip to main content

Diel pattern of circadian clock and storage protein gene expression in leaves and during seed filling in cowpea (Vigna unguiculata)

Overview of attention for article published in BMC Plant Biology, February 2018
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age and source

Mentioned by

twitter
1 X user
facebook
2 Facebook pages

Citations

dimensions_citation
15 Dimensions

Readers on

mendeley
42 Mendeley
Title
Diel pattern of circadian clock and storage protein gene expression in leaves and during seed filling in cowpea (Vigna unguiculata)
Published in
BMC Plant Biology, February 2018
DOI 10.1186/s12870-018-1244-2
Pubmed ID
Authors

Julia Weiss, Marta I. Terry, Marina Martos-Fuentes, Lisa Letourneux, Victoria Ruiz-Hernández, Juan A. Fernández, Marcos Egea-Cortines

Abstract

Cowpea (Vigna unguiculata) is an important source of protein supply for animal and human nutrition. The major storage globulins VICILIN and LEGUMIN (LEG) are synthesized from several genes including LEGA, LEGB, LEGJ and CVC (CONVICILIN). The current hypothesis is that the plant circadian core clock genes are conserved in a wide array of species and that primary metabolism is to a large extent controlled by the plant circadian clock. Our aim was to investigate a possible link between gene expression of storage proteins and the circadian clock. We identified cowpea orthologues of the core clock genes VunLHY, VunTOC1, VunGI and VunELF3, the protein storage genes VunLEG, VunLEGJ, and VunCVC as well as nine candidate reference genes used in RT-PCR. ELONGATION FACTOR 1-A (ELF1A) resulted the most suitable reference gene. The clock genes VunELF3, VunGI, VunTOC1 and VunLHY showed a rhythmic expression profile in leaves with a typical evening/night and morning/midday phased expression. The diel patterns were not completely robust and only VungGI and VungELF3 retained a rhythmic pattern under free running conditions of darkness. Under field conditions, rhythmicity and phasing apparently faded during early pod and seed development and was regained in ripening pods for VunTOC1 and VunLHY. Mature seeds showed a rhythmic expression of VunGI resembling leaf tissue under controlled growth chamber conditions. Comparing time windows during developmental stages we found that VunCVC and VunLEG were significantly down regulated during the night in mature pods as compared to intermediate ripe pods, while changes in seeds were non-significant due to high variance. The rhythmic expression under field conditions was lost under growth chamber conditions. The core clock gene network is conserved in cowpea leaves showing a robust diel expression pattern except VunELF3 under growth chamber conditions. There appears to be a clock transcriptional reprogramming in pods and seeds compared to leaves. Storage protein deposition may be circadian regulated under field conditions but the strong environmental signals are not met under artificial growth conditions. Diel expression pattern in field conditions may result in better usage of energy for protein storage.

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 42 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 42 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 8 19%
Researcher 5 12%
Student > Master 4 10%
Student > Doctoral Student 3 7%
Student > Bachelor 3 7%
Other 9 21%
Unknown 10 24%
Readers by discipline Count As %
Agricultural and Biological Sciences 18 43%
Biochemistry, Genetics and Molecular Biology 6 14%
Nursing and Health Professions 1 2%
Social Sciences 1 2%
Medicine and Dentistry 1 2%
Other 1 2%
Unknown 14 33%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 21 February 2018.
All research outputs
#17,930,799
of 23,023,224 outputs
Outputs from BMC Plant Biology
#1,916
of 3,283 outputs
Outputs of similar age
#314,779
of 446,257 outputs
Outputs of similar age from BMC Plant Biology
#16
of 41 outputs
Altmetric has tracked 23,023,224 research outputs across all sources so far. This one is in the 19th percentile – i.e., 19% of other outputs scored the same or lower than it.
So far Altmetric has tracked 3,283 research outputs from this source. They receive a mean Attention Score of 3.0. This one is in the 35th percentile – i.e., 35% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 446,257 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 24th percentile – i.e., 24% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 41 others from the same source and published within six weeks on either side of this one. This one is in the 39th percentile – i.e., 39% of its contemporaries scored the same or lower than it.