↓ Skip to main content

Cannabinoid-induced cell death in endometrial cancer cells: involvement of TRPV1 receptors in apoptosis

Overview of attention for article published in Journal of Physiology and Biochemistry, February 2018
Altmetric Badge

About this Attention Score

  • In the top 5% of all research outputs scored by Altmetric
  • One of the highest-scoring outputs from this source (#4 of 621)
  • High Attention Score compared to outputs of the same age (97th percentile)
  • High Attention Score compared to outputs of the same age and source (85th percentile)

Mentioned by

news
3 news outlets
twitter
68 X users
patent
1 patent
facebook
13 Facebook pages
wikipedia
4 Wikipedia pages
googleplus
2 Google+ users

Citations

dimensions_citation
89 Dimensions

Readers on

mendeley
121 Mendeley
Title
Cannabinoid-induced cell death in endometrial cancer cells: involvement of TRPV1 receptors in apoptosis
Published in
Journal of Physiology and Biochemistry, February 2018
DOI 10.1007/s13105-018-0611-7
Pubmed ID
Authors

B. M. Fonseca, G. Correia-da-Silva, N. A. Teixeira

Abstract

Among a variety of phytocannabinoids, Δ9-tetrahydrocannabinol (THC) and cannabidiol (CBD) are the most promising therapeutic compounds. Besides the well-known palliative effects in cancer patients, cannabinoids have been shown to inhibit in vitro growth of tumor cells. Likewise, the major endocannabinoids (eCBs), anandamide (AEA) and 2-arachidonoylglycerol (2-AG), induce tumor cell death. The purpose of the present study was to characterize cannabinoid elements and evaluate the effect of cannabinoids in endometrial cancer cell viability. The presence of cannabinoid receptors, transient receptor potential vanilloid 1 (TRPV1), and endocannabinoid-metabolizing enzymes were determined by qRT-PCR and Western blot. We also examined the effects and the underlying mechanisms induced by eCBs and phytocannabinoids in endometrial cancer cell viability. Besides TRPV1, both EC cell lines express all the constituents of the endocannabinoid system. We observed that at concentrations higher than 5 μM, eCBs and CBD induced a significant reduction in cell viability in both Ishikawa and Hec50co cells, whereas THC did not cause any effect. In Ishikawa cells, contrary to Hec50co, treatment with AEA and CBD resulted in an increase in the levels of activated caspase -3/-7, in cleaved PARP, and in reactive oxygen species generation, confirming that the reduction in cell viability observed in the MTT assay was caused by the activation of the apoptotic pathway. Finally, these effects were dependent on TRPV1 activation and intracellular calcium levels. These data indicate that cannabinoids modulate endometrial cancer cell death. Selective targeting of TPRV1 by AEA, CBD, or other stable analogues may be an attractive research area for the treatment of estrogen-dependent endometrial carcinoma. Our data further support the evaluation of CBD and CBD-rich extracts for the potential treatment of endometrial cancer, particularly, that has become non-responsive to common therapies.

X Demographics

X Demographics

The data shown below were collected from the profiles of 68 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 121 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 121 100%

Demographic breakdown

Readers by professional status Count As %
Student > Master 20 17%
Student > Bachelor 16 13%
Researcher 13 11%
Student > Ph. D. Student 7 6%
Student > Doctoral Student 6 5%
Other 15 12%
Unknown 44 36%
Readers by discipline Count As %
Medicine and Dentistry 15 12%
Pharmacology, Toxicology and Pharmaceutical Science 13 11%
Biochemistry, Genetics and Molecular Biology 12 10%
Agricultural and Biological Sciences 8 7%
Immunology and Microbiology 6 5%
Other 17 14%
Unknown 50 41%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 87. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 12 January 2024.
All research outputs
#496,296
of 25,721,020 outputs
Outputs from Journal of Physiology and Biochemistry
#4
of 621 outputs
Outputs of similar age
#12,216
of 457,552 outputs
Outputs of similar age from Journal of Physiology and Biochemistry
#1
of 7 outputs
Altmetric has tracked 25,721,020 research outputs across all sources so far. Compared to these this one has done particularly well and is in the 98th percentile: it's in the top 5% of all research outputs ever tracked by Altmetric.
So far Altmetric has tracked 621 research outputs from this source. They receive a mean Attention Score of 4.6. This one has done particularly well, scoring higher than 99% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 457,552 tracked outputs that were published within six weeks on either side of this one in any source. This one has done particularly well, scoring higher than 97% of its contemporaries.
We're also able to compare this research output to 7 others from the same source and published within six weeks on either side of this one. This one has scored higher than all of them