↓ Skip to main content

A novel in vitro model for the assessment of postnatal myonuclear accretion

Overview of attention for article published in Skeletal Muscle, February 2018
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age

Mentioned by

twitter
4 X users

Citations

dimensions_citation
9 Dimensions

Readers on

mendeley
45 Mendeley
Title
A novel in vitro model for the assessment of postnatal myonuclear accretion
Published in
Skeletal Muscle, February 2018
DOI 10.1186/s13395-018-0151-4
Pubmed ID
Authors

Anita Kneppers, Lex Verdijk, Chiel de Theije, Mark Corten, Ellis Gielen, Luc van Loon, Annemie Schols, Ramon Langen

Abstract

Due to the post-mitotic nature of myonuclei, postnatal myogenesis is essential for skeletal muscle growth, repair, and regeneration. This process is facilitated by satellite cells through proliferation, differentiation, and subsequent fusion with a pre-existing muscle fiber (i.e., myonuclear accretion). Current knowledge of myogenesis is primarily based on the in vitro formation of syncytia from myoblasts, which represents aspects of developmental myogenesis, but may incompletely portray postnatal myogenesis. Therefore, we aimed to develop an in vitro model that better reflects postnatal myogenesis, to study the cell intrinsic and extrinsic processes and signaling involved in the regulation of postnatal myogenesis. Proliferating C2C12 myoblasts were trypsinized and co-cultured for 3 days with 5 days differentiated C2C12 myotubes. Postnatal myonuclear accretion was visually assessed by live cell time-lapse imaging and cell tracing by cell labeling with Vybrant® DiD and DiO. Furthermore, a Cre/LoxP-based cell system was developed to semi-quantitatively assess in vitro postnatal myonuclear accretion by the conditional expression of luciferase upon myoblast-myotube fusion. Luciferase activity was assessed luminometrically and corrected for total protein content. Live cell time-lapse imaging, staining-based cell tracing, and recombination-dependent luciferase activity, showed the occurrence of postnatal myonuclear accretion in vitro. Treatment of co-cultures with the myogenic factor IGF-I (p < 0.001) and the cytokines IL-13 (p < 0.05) and IL-4 (p < 0.001) increased postnatal myonuclear accretion, while the myogenic inhibitors cytochalasin D (p < 0.001), myostatin (p < 0.05), and TNFα (p < 0.001) decreased postnatal myonuclear accretion. Furthermore, postnatal myonuclear accretion was increased upon recovery from electrical pulse stimulation-induced fiber damage (p < 0.001) and LY29004-induced atrophy (p < 0.001). Moreover, cell type-specific siRNA-mediated knockdown of myomaker in myoblasts (p < 0.001), but not in myotubes, decreased postnatal myonuclear accretion. We developed a physiologically relevant, sensitive, high-throughput cell system for semi-quantitative assessment of in vitro postnatal myonuclear accretion, which can be used to mimic physiological myogenesis triggers, and can distinguish the cell type-specific roles of signals and responses in the regulation of postnatal myogenesis. As such, this method is suitable for both basal and translational research on the regulation of postnatal myogenesis, and will improve our understanding of muscle pathologies that result from impaired satellite cell number or function.

X Demographics

X Demographics

The data shown below were collected from the profiles of 4 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 45 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 45 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 9 20%
Student > Master 8 18%
Student > Bachelor 6 13%
Student > Postgraduate 3 7%
Researcher 3 7%
Other 3 7%
Unknown 13 29%
Readers by discipline Count As %
Biochemistry, Genetics and Molecular Biology 10 22%
Agricultural and Biological Sciences 5 11%
Medicine and Dentistry 4 9%
Sports and Recreations 4 9%
Engineering 2 4%
Other 5 11%
Unknown 15 33%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 2. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 03 November 2018.
All research outputs
#14,376,243
of 23,023,224 outputs
Outputs from Skeletal Muscle
#303
of 364 outputs
Outputs of similar age
#244,586
of 446,257 outputs
Outputs of similar age from Skeletal Muscle
#9
of 11 outputs
Altmetric has tracked 23,023,224 research outputs across all sources so far. This one is in the 35th percentile – i.e., 35% of other outputs scored the same or lower than it.
So far Altmetric has tracked 364 research outputs from this source. They typically receive more attention than average, with a mean Attention Score of 8.2. This one is in the 14th percentile – i.e., 14% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 446,257 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 42nd percentile – i.e., 42% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 11 others from the same source and published within six weeks on either side of this one. This one is in the 18th percentile – i.e., 18% of its contemporaries scored the same or lower than it.