↓ Skip to main content

Brain region-specific enhancement of remyelination and prevention of demyelination by the CSF1R kinase inhibitor BLZ945

Overview of attention for article published in Acta Neuropathologica Communications, February 2018
Altmetric Badge

About this Attention Score

  • In the top 25% of all research outputs scored by Altmetric
  • High Attention Score compared to outputs of the same age (87th percentile)
  • Good Attention Score compared to outputs of the same age and source (75th percentile)

Mentioned by

twitter
6 X users
patent
3 patents
f1000
1 research highlight platform

Citations

dimensions_citation
97 Dimensions

Readers on

mendeley
128 Mendeley
Title
Brain region-specific enhancement of remyelination and prevention of demyelination by the CSF1R kinase inhibitor BLZ945
Published in
Acta Neuropathologica Communications, February 2018
DOI 10.1186/s40478-018-0510-8
Pubmed ID
Authors

Nicolau Beckmann, Elisa Giorgetti, Anna Neuhaus, Stefan Zurbruegg, Nathalie Accart, Paul Smith, Julien Perdoux, Ludovic Perrot, Mark Nash, Sandrine Desrayaud, Peter Wipfli, Wilfried Frieauff, Derya R. Shimshek

Abstract

Multiple sclerosis (MS) is a chronic inflammatory disease affecting the central nervous system (CNS). While multiple effective immunomodulatory therapies for MS exist today, they lack the scope of promoting CNS repair, in particular remyelination. Microglia play a pivotal role in regulating myelination processes, and the colony-stimulating factor 1 (CSF-1) pathway is a key regulator for microglia differentiation and survival. Here, we investigated the effects of the CSF-1 receptor kinase inhibitor, BLZ945, on central myelination processes in the 5-week murine cuprizone model by non-invasive and longitudinal magnetic resonance imaging (MRI) and histology. Therapeutic 2-week BLZ945 treatment caused a brain region-specific enhancement of remyelination in the striatum/cortex, which was absent in the corpus callosum/external capsule. This beneficial effect correlated positively with microglia reduction, increased oligodendrocytes and astrogliosis. Prophylactic BLZ945 treatment prevented excessive demyelination in the corpus callosum by reducing microglia and increasing oligondendrocytes. In the external capsule oligodendrocytes were depleted but not microglia and a buildup of myelin debris and axonal damage was observed. A similar microglial dysfunction in the external capsule with an increase of myelin debris was obvious in triggering receptor expressed on myeloid cells 2 (TREM2) knock-out mice treated with cuprizone. Finally, therapeutic BLZ945 treatment did not change the disease course in experimental autoimmune encephalomyelitis mice, a peripherally driven neuroinflammation model. Taken together, our data suggest that a short-term therapeutic inhibition of the CSF-1 receptor pathway by BLZ945 in the murine cuprizone model enhances central remyelination by modulating neuroinflammation. Thus, microglia-modulating therapies could be considered clinically for promoting myelination in combination with standard-of-care treatments in MS patients.

X Demographics

X Demographics

The data shown below were collected from the profiles of 6 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 128 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 128 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 23 18%
Researcher 23 18%
Student > Bachelor 13 10%
Student > Master 10 8%
Student > Doctoral Student 9 7%
Other 15 12%
Unknown 35 27%
Readers by discipline Count As %
Neuroscience 31 24%
Medicine and Dentistry 12 9%
Agricultural and Biological Sciences 12 9%
Biochemistry, Genetics and Molecular Biology 10 8%
Immunology and Microbiology 6 5%
Other 12 9%
Unknown 45 35%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 14. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 22 April 2021.
All research outputs
#2,515,725
of 25,605,018 outputs
Outputs from Acta Neuropathologica Communications
#385
of 1,586 outputs
Outputs of similar age
#60,253
of 471,788 outputs
Outputs of similar age from Acta Neuropathologica Communications
#7
of 24 outputs
Altmetric has tracked 25,605,018 research outputs across all sources so far. Compared to these this one has done particularly well and is in the 90th percentile: it's in the top 10% of all research outputs ever tracked by Altmetric.
So far Altmetric has tracked 1,586 research outputs from this source. They typically receive a lot more attention than average, with a mean Attention Score of 13.8. This one has gotten more attention than average, scoring higher than 74% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 471,788 tracked outputs that were published within six weeks on either side of this one in any source. This one has done well, scoring higher than 87% of its contemporaries.
We're also able to compare this research output to 24 others from the same source and published within six weeks on either side of this one. This one has done well, scoring higher than 75% of its contemporaries.