↓ Skip to main content

Mechanism of evolution by genetic assimilation

Overview of attention for article published in Biophysical Reviews, February 2018
Altmetric Badge

About this Attention Score

  • Above-average Attention Score compared to outputs of the same age (53rd percentile)
  • Good Attention Score compared to outputs of the same age and source (76th percentile)

Mentioned by

twitter
6 X users

Citations

dimensions_citation
35 Dimensions

Readers on

mendeley
48 Mendeley
Title
Mechanism of evolution by genetic assimilation
Published in
Biophysical Reviews, February 2018
DOI 10.1007/s12551-018-0403-x
Pubmed ID
Authors

Ken Nishikawa, Akira R. Kinjo

Abstract

Conrad H. Waddington discovered the phenomenon of genetic assimilation through a series of experiments on fruit flies. In those experiments, artificially exerted environmental stress induced plastic phenotypic changes in the fruit flies, but after some generations, the same phenotypic variant started to appear without the environmental stress. Both the initial state (where the phenotypic changes were environmentally induced and plastic) and the final state (where the phenotypic changes were genetically fixed and constitutive) are experimental facts. However, it remains unclear how the environmentally induced phenotypic change in the first generation becomes genetically fixed in the central process of genetic assimilation itself. We have argued that the key to understanding the mechanism of genetic assimilation lies in epigenetics, and proposed the "cooperative model" in which the evolutionary process depends on both genetic and epigenetic factors. Evolutionary simulations based on the cooperative model reproduced the process of genetic assimilation. Detailed analysis of the trajectories has revealed genetic assimilation is a process in which epigenetically induced phenotypic changes are incrementally and statistically replaced with multiple minor genetic mutations through natural selection. In this scenario, epigenetic and genetic changes may be considered as mutually independent but equivalent in terms of their effects on phenotypic changes. This finding rejects the common (and confused) hypothesis that epigenetically induced phenotypic changes depend on genetic mutations. Furthermore, we argue that transgenerational epigenetic inheritance is not required for evolution by genetic assimilation.

X Demographics

X Demographics

The data shown below were collected from the profiles of 6 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 48 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 48 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 15 31%
Researcher 9 19%
Student > Bachelor 7 15%
Student > Master 4 8%
Professor 3 6%
Other 6 13%
Unknown 4 8%
Readers by discipline Count As %
Agricultural and Biological Sciences 25 52%
Biochemistry, Genetics and Molecular Biology 10 21%
Social Sciences 2 4%
Environmental Science 1 2%
Physics and Astronomy 1 2%
Other 1 2%
Unknown 8 17%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 3. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 21 January 2020.
All research outputs
#7,546,261
of 23,023,224 outputs
Outputs from Biophysical Reviews
#176
of 799 outputs
Outputs of similar age
#132,560
of 331,231 outputs
Outputs of similar age from Biophysical Reviews
#5
of 21 outputs
Altmetric has tracked 23,023,224 research outputs across all sources so far. This one is in the 44th percentile – i.e., 44% of other outputs scored the same or lower than it.
So far Altmetric has tracked 799 research outputs from this source. They receive a mean Attention Score of 2.7. This one has done well, scoring higher than 76% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 331,231 tracked outputs that were published within six weeks on either side of this one in any source. This one has gotten more attention than average, scoring higher than 53% of its contemporaries.
We're also able to compare this research output to 21 others from the same source and published within six weeks on either side of this one. This one has done well, scoring higher than 76% of its contemporaries.