↓ Skip to main content

The Effects of Photobiomodulation of 808 nm Diode Laser Therapy at Higher Fluence on the in Vitro Osteogenic Differentiation of Bone Marrow Stromal Cells

Overview of attention for article published in Frontiers in Physiology, February 2018
Altmetric Badge

Mentioned by

twitter
1 X user

Citations

dimensions_citation
50 Dimensions

Readers on

mendeley
54 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
The Effects of Photobiomodulation of 808 nm Diode Laser Therapy at Higher Fluence on the in Vitro Osteogenic Differentiation of Bone Marrow Stromal Cells
Published in
Frontiers in Physiology, February 2018
DOI 10.3389/fphys.2018.00123
Pubmed ID
Authors

Andrea Amaroli, Dimitrios Agas, Fulvio Laus, Vincenzo Cuteri, Reem Hanna, Maria Giovanna Sabbieti, Stefano Benedicenti

Abstract

The literature has supported the concept of mesenchymal stromal cells (MSCs) in bone regeneration as one of the most important applications in oro-maxillofacial reconstructions. However, the fate of the transplanted cells and their effects on the clinical outcome is still uncertain. Photobiomodulation (PBM) plays an important role in the acceleration of tissue regeneration and potential repair. The aim of this in vitro study is to evaluate the effectiveness of PBM with 808 nm diode laser therapy, using a flat-top hand-piece delivery system at a higher-fluence (64 J/cm2) irradiation (1 W, continuous-wave) on bone marrow stromal cells (BMSCs). The BMSCs of 3 old female Balb-c mice were analyzed. The cells were divided into two groups: irradiated group and control group. In the former the cells were irradiated every 24 h during 0 day (T0), 5 (T1), 10 (T2), and 15 (T3) days, whereas the control group was non-irradiated. The results have shown that the 64 J/cm2 laser irradiation has increased the Runt-related transcription factor 2 (Runx2). Runx2 is the most important early marker of osteoblast differentiation. The higher-fluence suppressed the synthesis of adipogenic transcription factor (PPARγ), the pivotal transcription factor in adipogenic differentiation. Also, the osteogenic markers such as Osterix (Osx) and alkaline phosphatase (ALP) were upregulated with an increase in the matrix mineralization. Furthermore, western blotting data demonstrated that the laser therapy has induced a statistically valid increase in the synthesis of transforming growth factor β1 (TGF-β1) but had no effects on the tumor necrosis factor α (TNFα) production. The data has statistically validated the down-regulation of the important pro-inflammatory cytokines such as interleukin IL-6, and IL-17 after 808 nm PBM exposition. An increase in anti-inflammatory cytokines such as IL-1rα and IL-10 was observed. These in vitro studies provide for first time the initial proof that the PBM of the 808 nm diode laser therapy with flat-top hand-piece delivery system at a higher-fluence irradiation of 64 J/cm2 (1 W/cm2) can modulate BMSCs differentiation in enhancing osteogenesis.

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 54 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 54 100%

Demographic breakdown

Readers by professional status Count As %
Student > Master 10 19%
Researcher 6 11%
Student > Ph. D. Student 6 11%
Student > Doctoral Student 4 7%
Professor 3 6%
Other 9 17%
Unknown 16 30%
Readers by discipline Count As %
Medicine and Dentistry 15 28%
Biochemistry, Genetics and Molecular Biology 6 11%
Nursing and Health Professions 3 6%
Veterinary Science and Veterinary Medicine 2 4%
Physics and Astronomy 2 4%
Other 11 20%
Unknown 15 28%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 24 February 2018.
All research outputs
#20,466,701
of 23,025,074 outputs
Outputs from Frontiers in Physiology
#9,487
of 13,773 outputs
Outputs of similar age
#292,057
of 330,329 outputs
Outputs of similar age from Frontiers in Physiology
#254
of 362 outputs
Altmetric has tracked 23,025,074 research outputs across all sources so far. This one is in the 1st percentile – i.e., 1% of other outputs scored the same or lower than it.
So far Altmetric has tracked 13,773 research outputs from this source. They typically receive more attention than average, with a mean Attention Score of 7.6. This one is in the 1st percentile – i.e., 1% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 330,329 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 362 others from the same source and published within six weeks on either side of this one. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.