↓ Skip to main content

Identification of the nucleotide substitution that generates the fourth polymorphic site in human deoxyribonuclease I (DNase I)

Overview of attention for article published in Human Genetics, August 1996
Altmetric Badge

Mentioned by

wikipedia
2 Wikipedia pages

Citations

dimensions_citation
8 Dimensions

Readers on

mendeley
2 Mendeley
Title
Identification of the nucleotide substitution that generates the fourth polymorphic site in human deoxyribonuclease I (DNase I)
Published in
Human Genetics, August 1996
DOI 10.1007/s004390050231
Pubmed ID
Authors

Reiko Iida, Toshihiro Yasuda, Haruo Takeshita, Etsuko Tsubota, Isao Yuasa, Tamiko Nakajima, K. Kishi

Abstract

In addition to the three polymorphic sites responsible for protein polymorphism, a new polymorphic site has been identified in intron 7 of the human deoxyribonuclease I (DNase I) gene. Three phenotypes were observed on single-strand conformational polymorphism analysis of a 266-bp polymerase chain reaction-amplified fragment containing exon 7 and part of intron 7 of the human DNase I gene. DNA sequencing analysis demonstrated that a C-G substitution occurred at position 1978 in intron 7. This substitution was confirmed by restriction fragment length polymorphism analysis, since a new Msp1 site is created by the substitution. Population and family studies showed that the inheritance of the genotypes for DNase I C1978G polymorphism is controlled by two codominant alleles, tentatively designated DNASE1*1978C and *1978G. The gene frequencies in a Japanese population were significantly different from those in a Caucasian (German) population. The C1978G polymorphism is in linkage disequilibrium with the common DNase I protein phenotypes 1, 1-2, and 2.

Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 2 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 2 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 2 100%
Readers by discipline Count As %
Biochemistry, Genetics and Molecular Biology 1 50%
Unknown 1 50%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 3. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 13 September 2013.
All research outputs
#8,535,472
of 25,374,647 outputs
Outputs from Human Genetics
#1,014
of 2,957 outputs
Outputs of similar age
#8,376
of 28,319 outputs
Outputs of similar age from Human Genetics
#9
of 31 outputs
Altmetric has tracked 25,374,647 research outputs across all sources so far. This one is in the 43rd percentile – i.e., 43% of other outputs scored the same or lower than it.
So far Altmetric has tracked 2,957 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 7.0. This one is in the 22nd percentile – i.e., 22% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 28,319 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 8th percentile – i.e., 8% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 31 others from the same source and published within six weeks on either side of this one. This one is in the 3rd percentile – i.e., 3% of its contemporaries scored the same or lower than it.