↓ Skip to main content

Histological detection of dynamic glial responses in the dysmyelinating Tabby-jimpy mutant brain

Overview of attention for article published in Anatomical Science International, November 2016
Altmetric Badge

Mentioned by

twitter
1 X user

Citations

dimensions_citation
9 Dimensions

Readers on

mendeley
8 Mendeley
Title
Histological detection of dynamic glial responses in the dysmyelinating Tabby-jimpy mutant brain
Published in
Anatomical Science International, November 2016
DOI 10.1007/s12565-016-0383-5
Pubmed ID
Authors

Masanao Ikeda, M. Ibrahim Hossain, Li Zhou, Masao Horie, Kazuhiro Ikenaka, Arata Horii, Hirohide Takebayashi

Abstract

Oligodendrocytes (OLs) are glial cells that form myelin sheaths surrounding the axons in the central nervous system (CNS). Jimpy (jp) mutant mice are dysmyelinating disease models that show developmental abnormalities in myelinated OLs in the CNS. The causative gene in jp mice is the proteolipid protein (PLP) located on the X chromosome. Mutations in the jp allele result in exon 5 skipping and expression of abnormal PLP containing a C-terminal frame shift. Many lines of evidence suggest that abnormal PLP in OLs results in endoplasmic reticulum (ER) stress and cell death. To histologically detect glial responses in the jp mutant brain, we performed staining with lineage-specific markers. Using OL markers and OL progenitor cell marker staining, we identified reduced numbers of OL lineage cells in the jp mutant brain. Nuclear staining of the transcription factor Olig1 was observed in the Tabby-jp brain, whereas cytoplasmic Olig1 staining was observed in the wild-type brain at postnatal day 21, suggesting that active myelination was present in the mutant brain. Many microglial cells with activated morphology and intensive staining of CD11b microglia marker were observed in the internal capsule of the mutant brain, a region of white matter containing residual OLs. Activated astrocytes with high glial fibrillary acidic protein-immunoreactivity were also mainly observed in white matter. Finally, we performed in situ hybridization using C/EBP homologous protein (CHOP) antisense probes to detect ER stressed cells. CHOP mRNA was strongly expressed in residual OLs in the Tabby-jp mutant mice at postnatal stages. These data show that microglia and astrocytes exhibit dynamic glial activation in response to cell death of OLs during Tabby-jp pathogenesis, and that CHOP antisense probes may be a good marker for the detection of ER-stressed OLs in jp mutant mice.

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 8 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 8 100%

Demographic breakdown

Readers by professional status Count As %
Student > Master 3 38%
Student > Ph. D. Student 1 13%
Student > Doctoral Student 1 13%
Researcher 1 13%
Unknown 2 25%
Readers by discipline Count As %
Neuroscience 3 38%
Veterinary Science and Veterinary Medicine 1 13%
Agricultural and Biological Sciences 1 13%
Nursing and Health Professions 1 13%
Unknown 2 25%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 28 February 2018.
All research outputs
#18,589,103
of 23,025,074 outputs
Outputs from Anatomical Science International
#167
of 240 outputs
Outputs of similar age
#304,648
of 416,647 outputs
Outputs of similar age from Anatomical Science International
#4
of 5 outputs
Altmetric has tracked 23,025,074 research outputs across all sources so far. This one is in the 11th percentile – i.e., 11% of other outputs scored the same or lower than it.
So far Altmetric has tracked 240 research outputs from this source. They receive a mean Attention Score of 3.7. This one is in the 18th percentile – i.e., 18% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 416,647 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 15th percentile – i.e., 15% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 5 others from the same source and published within six weeks on either side of this one.