↓ Skip to main content

Quantification of cardiac troponin I in human plasma by immunoaffinity enrichment and targeted mass spectrometry

Overview of attention for article published in Analytical & Bioanalytical Chemistry, March 2018
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age and source

Mentioned by

twitter
4 X users

Citations

dimensions_citation
24 Dimensions

Readers on

mendeley
26 Mendeley
Title
Quantification of cardiac troponin I in human plasma by immunoaffinity enrichment and targeted mass spectrometry
Published in
Analytical & Bioanalytical Chemistry, March 2018
DOI 10.1007/s00216-018-0960-7
Pubmed ID
Authors

Nicole A. Schneck, Karen W. Phinney, Sang Bok Lee, Mark S. Lowenthal

Abstract

Quantification of cardiac troponin I (cTnI), a protein biomarker used for diagnosing myocardial infarction, has been achieved in native patient plasma based on an immunoaffinity enrichment strategy and isotope dilution (ID) liquid chromatography-tandem mass spectrometry (LC-MS/MS) method. The key steps in the workflow involved isolating cTnI from plasma using anti-cTnI antibody coupled to magnetic nanoparticles, followed by an enzymatic digestion with trypsin. Three tryptic peptides from cTnI were monitored and used for quantification by ID-LC-MS/MS via multiple reaction monitoring (MRM). Measurements were performed using a matrix-matched calibration system. NIST SRM 2921 Human Cardiac Troponin Complex acted as the calibrant and a full-length isotopically labeled protein analog of cTnI was used as an internal standard. The method was successfully demonstrated on five patient plasma samples, with cTnI concentrations measuring between 4.86 μg/L and 11.3 μg/L (signifying moderate myocardial infarctions). LC-MS/MS measurement precision was validated by three unique peptides from cTnI and two MRM transitions per peptide. Relative standard deviation (CV) from the five plasma samples was determined to be ≤14.3%. This study has demonstrated that quantification of cTnI in native plasma from myocardial infarction patients can be achieved based on an ID-LC-MS/MS method. The development of an ID-LC-MS/MS method for cTnI in plasma is a first step for future certification of matrix-based reference materials, which may be used to help harmonize discordant cTnI clinical assays. Graphical abstract A schematic of the workflow for measuring cardiac troponin I (cTnI), a low-abundant protein biomarker used for diagnosing myocardial infarction, in human plasma by isotope-dilution LC-MS/MS analysis.

X Demographics

X Demographics

The data shown below were collected from the profiles of 4 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 26 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 26 100%

Demographic breakdown

Readers by professional status Count As %
Researcher 7 27%
Student > Bachelor 3 12%
Student > Ph. D. Student 2 8%
Other 1 4%
Lecturer 1 4%
Other 2 8%
Unknown 10 38%
Readers by discipline Count As %
Biochemistry, Genetics and Molecular Biology 5 19%
Chemistry 2 8%
Medicine and Dentistry 2 8%
Pharmacology, Toxicology and Pharmaceutical Science 1 4%
Nursing and Health Professions 1 4%
Other 3 12%
Unknown 12 46%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 09 April 2018.
All research outputs
#17,292,294
of 25,382,440 outputs
Outputs from Analytical & Bioanalytical Chemistry
#5,671
of 9,619 outputs
Outputs of similar age
#223,031
of 344,853 outputs
Outputs of similar age from Analytical & Bioanalytical Chemistry
#92
of 194 outputs
Altmetric has tracked 25,382,440 research outputs across all sources so far. This one is in the 21st percentile – i.e., 21% of other outputs scored the same or lower than it.
So far Altmetric has tracked 9,619 research outputs from this source. They receive a mean Attention Score of 3.1. This one is in the 37th percentile – i.e., 37% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 344,853 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 26th percentile – i.e., 26% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 194 others from the same source and published within six weeks on either side of this one. This one is in the 49th percentile – i.e., 49% of its contemporaries scored the same or lower than it.