↓ Skip to main content

Mechanisms of Oral Tolerance

Overview of attention for article published in Clinical Reviews in Allergy & Immunology, February 2018
Altmetric Badge

About this Attention Score

  • In the top 5% of all research outputs scored by Altmetric
  • One of the highest-scoring outputs from this source (#7 of 698)
  • High Attention Score compared to outputs of the same age (98th percentile)
  • High Attention Score compared to outputs of the same age and source (92nd percentile)

Mentioned by

news
17 news outlets
twitter
4 X users
facebook
1 Facebook page
wikipedia
1 Wikipedia page

Citations

dimensions_citation
182 Dimensions

Readers on

mendeley
305 Mendeley
Title
Mechanisms of Oral Tolerance
Published in
Clinical Reviews in Allergy & Immunology, February 2018
DOI 10.1007/s12016-018-8680-5
Pubmed ID
Authors

Leticia Tordesillas, M. Cecilia Berin

Abstract

Oral tolerance is a state of systemic unresponsiveness that is the default response to food antigens in the gastrointestinal tract, although immune tolerance can also be induced by other routes, such as the skin or inhalation. Antigen can be acquired directly by intestinal phagocytes, or pass through enterocytes or goblet cell-associated passages prior to capture by dendritic cells (DCs) in the lamina propria. Mucin from goblet cells acts on DCs to render them more tolerogenic. A subset of regulatory DCs expressing CD103 is responsible for delivery of antigen to the draining lymph node and induction of Tregs. These DCs also imprint gastrointestinal homing capacity, allowing the recently primed Tregs to home back to the lamina propria where they interact with macrophages that produce IL-10 and expand. Tregs induced by dietary antigen include Foxp3+Tregs and Foxp3-Tregs. In addition to Tregs, T cell anergy can also contribute to oral tolerance. The microbiota plays a key role in the development of oral tolerance, through regulation of macrophages and innate lymphoid cells that contribute to the regulatory phenotype of gastrointestinal dendritic cells. Absence of microbiota is associated with a susceptibility to food allergy, while presence of Clostridia strains can suppress development of food allergy through enhancement of Tregs and intestinal barrier function. It is not clear if feeding of antigens can also induce true immune tolerance after a memory immune response has been generated, but mechanistic studies of oral immunotherapy trials demonstrate shared pathways in oral tolerance and oral immunotherapy, with a role for Tregs and anergy. An important role for IgA and IgG antibodies in development of immune tolerance is also supported by studies of oral tolerance in humans. The elucidation of key pathways in oral tolerance could identify new strategies to increase efficacy of immunotherapy treatments for food allergy.

X Demographics

X Demographics

The data shown below were collected from the profiles of 4 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 305 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 305 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 41 13%
Student > Bachelor 41 13%
Student > Master 29 10%
Researcher 25 8%
Student > Doctoral Student 14 5%
Other 47 15%
Unknown 108 35%
Readers by discipline Count As %
Immunology and Microbiology 54 18%
Biochemistry, Genetics and Molecular Biology 40 13%
Medicine and Dentistry 36 12%
Agricultural and Biological Sciences 26 9%
Nursing and Health Professions 7 2%
Other 34 11%
Unknown 108 35%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 140. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 26 September 2022.
All research outputs
#283,237
of 24,739,153 outputs
Outputs from Clinical Reviews in Allergy & Immunology
#7
of 698 outputs
Outputs of similar age
#6,651
of 335,133 outputs
Outputs of similar age from Clinical Reviews in Allergy & Immunology
#2
of 14 outputs
Altmetric has tracked 24,739,153 research outputs across all sources so far. Compared to these this one has done particularly well and is in the 98th percentile: it's in the top 5% of all research outputs ever tracked by Altmetric.
So far Altmetric has tracked 698 research outputs from this source. They typically receive a lot more attention than average, with a mean Attention Score of 11.1. This one has done particularly well, scoring higher than 99% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 335,133 tracked outputs that were published within six weeks on either side of this one in any source. This one has done particularly well, scoring higher than 98% of its contemporaries.
We're also able to compare this research output to 14 others from the same source and published within six weeks on either side of this one. This one has done particularly well, scoring higher than 92% of its contemporaries.