↓ Skip to main content

Matrix Optical Absorption in UV-MALDI MS

Overview of attention for article published in Journal of the American Society for Mass Spectrometry, November 2017
Altmetric Badge

Mentioned by

twitter
1 X user

Citations

dimensions_citation
18 Dimensions

Readers on

mendeley
56 Mendeley
Title
Matrix Optical Absorption in UV-MALDI MS
Published in
Journal of the American Society for Mass Spectrometry, November 2017
DOI 10.1007/s13361-017-1843-4
Pubmed ID
Authors

Kenneth N. Robinson, Rory T. Steven, Josephine Bunch

Abstract

In ultraviolet matrix-assisted laser desorption/ionization mass spectrometry (UV-MALDI MS) matrix compound optical absorption governs the uptake of laser energy, which in turn has a strong influence on experimental results. Despite this, quantitative absorption measurements are lacking for most matrix compounds. Furthermore, despite the use of UV-MALDI MS to detect a vast range of compounds, investigations into the effects of laser energy have been primarily restricted to single classes of analytes. We report the absolute solid state absorption spectra of the matrix compounds α-cyano-4-hydroxycinnamic acid (CHCA), para-nitroaniline (PNA), 2-mercaptobenzothiazole (MBT), 2,5-dihydroxybenzoic acid (2,5-DHB), and 2,4,6-trihydroxyacetophenone (THAP). The desorption/ionization characteristics of these matrix compounds with respect to laser fluence was investigated using mixed systems of matrix with either angiotensin II, PC(34:1) lipid standard, or haloperidol, acting as representatives for typical classes of analyte encountered in UV-MALDI MS. The first absolute solid phase spectra for PNA, MBT, and THAP are reported; additionally, inconsistencies between previously published spectra for CHCA are resolved. In light of these findings, suggestions are made for experimental optimization with regards to matrix and laser wavelength selection. The relationship between matrix optical cross-section and wavelength-dependant threshold fluence, fluence of maximum ion yield, and R, a new descriptor for the change in ion intensity with fluence, are described. A matrix cross-section of 1.3 × 10-17cm-2was identified as a potential minimum for desorption/ionization of analytes. Graphical Abstract ᅟ.

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 56 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 56 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 11 20%
Researcher 11 20%
Student > Master 9 16%
Student > Doctoral Student 4 7%
Professor 2 4%
Other 6 11%
Unknown 13 23%
Readers by discipline Count As %
Chemistry 15 27%
Biochemistry, Genetics and Molecular Biology 7 13%
Nursing and Health Professions 4 7%
Agricultural and Biological Sciences 3 5%
Unspecified 2 4%
Other 8 14%
Unknown 17 30%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 03 March 2018.
All research outputs
#22,764,772
of 25,382,440 outputs
Outputs from Journal of the American Society for Mass Spectrometry
#3,431
of 3,835 outputs
Outputs of similar age
#385,580
of 446,404 outputs
Outputs of similar age from Journal of the American Society for Mass Spectrometry
#41
of 49 outputs
Altmetric has tracked 25,382,440 research outputs across all sources so far. This one is in the 1st percentile – i.e., 1% of other outputs scored the same or lower than it.
So far Altmetric has tracked 3,835 research outputs from this source. They receive a mean Attention Score of 3.8. This one is in the 1st percentile – i.e., 1% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 446,404 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 49 others from the same source and published within six weeks on either side of this one. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.