↓ Skip to main content

Commissioning of a dedicated commercial Co‐60 total body irradiation unit

Overview of attention for article published in Journal of Applied Clinical Medical Physics, March 2018
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age
  • Above-average Attention Score compared to outputs of the same age and source (53rd percentile)

Mentioned by

twitter
2 X users

Citations

dimensions_citation
8 Dimensions

Readers on

mendeley
25 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Commissioning of a dedicated commercial Co‐60 total body irradiation unit
Published in
Journal of Applied Clinical Medical Physics, March 2018
DOI 10.1002/acm2.12309
Pubmed ID
Authors

Jay Burmeister, Adrian Nalichowski, Michael Snyder, Robert Halford, Geoff Baran, Brian Loughery, Ahmad Hammoud, Joe Rakowski, Todd Bossenberger

Abstract

We describe the commissioning of the first dedicated commercial total body irradiation (TBI) unit in clinical operation. The Best Theratronics GammaBeam 500 is a Co-60 teletherapy unit with extended field size and imaging capabilities. Radiation safety, mechanical and imaging systems, and radiation output are characterized. Beam data collection, calibration, and external dosimetric validation are described. All radiation safety and mechanical tests satisfied relevant requirements and measured dose distributions meet recommendations of American Association of Physicists in Medicine (AAPM) Report #17. At a typical treatment distance, the dose rate in free space per unit source activity using the thick flattening filter is 1.53 × 10-3 cGy*min-1 *Ci-1 . With a 14,000 Ci source, the resulting dose rate at the midplane of a typical patient is approximately 17 and 30 cGy/min using the thick and thin flattening filters, respectively, using the maximum source to couch distance. The maximum useful field size, defined by the 90% isodose line, at this location is 225 × 78 cm with field flatness within 5% over the central 178 × 73 cm. Measured output agreed with external validation within 0.5%. End-to-end testing was performed in a modified Rando phantom. In-house MATLAB software was developed to calculate patient-specific dose distributions using DOSXYZnrc, and fabricate custom 3D-printed forms for creating patient-specific lung blocks. End-to-end OSLD and diode measurements both with and without lung blocks agreed with Monte Carlo calculated doses to within 5% and in-phantom film measurements validated dose distribution uniformity. Custom lung block transmission measurements agree well with design criteria and provide clinically favorable dose distributions within the lungs. Block placement is easily facilitated using the flat panel imaging system with an exposure time of 0.01 min. In conclusion, a novel dedicated TBI unit has been commissioned and clinically implemented. Its mechanical, dosimetric, and imaging capabilities are suitable to provide state-of-the-art TBI for patients as large as 220 cm in height and 78 cm in width.

X Demographics

X Demographics

The data shown below were collected from the profiles of 2 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 25 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 25 100%

Demographic breakdown

Readers by professional status Count As %
Student > Master 4 16%
Researcher 3 12%
Student > Ph. D. Student 3 12%
Student > Doctoral Student 2 8%
Other 1 4%
Other 1 4%
Unknown 11 44%
Readers by discipline Count As %
Physics and Astronomy 3 12%
Engineering 3 12%
Medicine and Dentistry 2 8%
Psychology 1 4%
Nursing and Health Professions 1 4%
Other 1 4%
Unknown 14 56%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 2. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 12 March 2018.
All research outputs
#16,584,977
of 25,382,440 outputs
Outputs from Journal of Applied Clinical Medical Physics
#846
of 2,034 outputs
Outputs of similar age
#212,816
of 349,910 outputs
Outputs of similar age from Journal of Applied Clinical Medical Physics
#28
of 66 outputs
Altmetric has tracked 25,382,440 research outputs across all sources so far. This one is in the 34th percentile – i.e., 34% of other outputs scored the same or lower than it.
So far Altmetric has tracked 2,034 research outputs from this source. They receive a mean Attention Score of 2.4. This one has gotten more attention than average, scoring higher than 55% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 349,910 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 38th percentile – i.e., 38% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 66 others from the same source and published within six weeks on either side of this one. This one has gotten more attention than average, scoring higher than 53% of its contemporaries.