↓ Skip to main content

Volatiles of Grape Inoculated with Microorganisms: Modulation of Grapevine Moth Oviposition and Field Attraction

Overview of attention for article published in Microbial Ecology, March 2018
Altmetric Badge

About this Attention Score

  • In the top 25% of all research outputs scored by Altmetric
  • Good Attention Score compared to outputs of the same age (75th percentile)
  • Above-average Attention Score compared to outputs of the same age and source (60th percentile)

Mentioned by

twitter
3 X users
patent
2 patents

Citations

dimensions_citation
25 Dimensions

Readers on

mendeley
73 Mendeley
Title
Volatiles of Grape Inoculated with Microorganisms: Modulation of Grapevine Moth Oviposition and Field Attraction
Published in
Microbial Ecology, March 2018
DOI 10.1007/s00248-018-1164-6
Pubmed ID
Authors

Marco Tasin, Sebastian Larsson Herrera, Alan L. Knight, Wilson Barros-Parada, Eduardo Fuentes Contreras, Ilaria Pertot

Abstract

Semiochemicals released by plant-microbe associations are used by herbivorous insects to access and evaluate food resources and oviposition sites. Adult insects may utilize microbial-derived nutrients to prolong their lifespan, promote egg development, and offer a high nutritional substrate to their offspring. Here, we examined the behavioral role of semiochemicals from grape-microbe interactions on oviposition and field attraction of the grapevine moth Lobesia botrana (Denis & Schiffermüller). The volatile constituents released by grape inoculated with yeasts (Hanseniaspora uvarum (Niehaus), Metschnikowia pulcherrima (Pitt.) M.W. Miller, Pichia anomala, Saccharomyces cerevisiae Meyen ex E.C. Hansen, and Zygosaccharomyces rouxii (Boutroux) Yarrow), sour rot bacteria (Acetobacter aceti (Pasteur) Beijerinck and Gluconobacter oxydans (Henneberg) De Ley), and a fungal pathogen (Botrytis cinerea Pers.) all endemic of the vineyard were sampled by solid-phase microextraction and analyzed by gas-chromatography coupled with mass spectrometry. Ethanol, 3-methyl-1-butanol, and ethyl acetate were the most common volatiles released from all microbe-inoculated grapes. In addition, acetic acid was released at a substantial amount following bacteria inoculation and in a three-way inoculation with yeasts and the fungus. 2-phenylethanol, a compound reported to attract tortricid moths when used in combination with acetic acid, was found at a relatively low level in all microbial combinations as well as in the control grape. While grapes inoculated with a consortium of yeasts stimulated oviposition in comparison with uninoculated berries, the phytopathogenic fungus deterred egg-laying. Nonetheless, the highest preference to lay eggs was measured when the yeasts were co-inoculated with the fungus. The lowest preference was obtained when grapes were inoculated with sour rot bacteria and their binary co-inoculation with yeasts and the fungus. Interestingly, oviposition on berries simultaneously inoculated with all the three microbial groups was unaffected. Lures loaded with either acetic acid or 2-phenylethanol were not attractive when placed in traps as single component in vineyards, but a binary blend attracted both sexes of grapevine moth in significant numbers. Further addition of the three most common volatiles released by infected berries (ethanol, 3-methyl-1-butanol, and ethyl acetate) did not significantly increase moth catch with this binary blend. The ecological implications of the grape-microorganism and grapevine moth interaction as well as the possibility to develop a pest monitoring system based on microbial volatiles are discussed.

X Demographics

X Demographics

The data shown below were collected from the profiles of 3 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 73 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 73 100%

Demographic breakdown

Readers by professional status Count As %
Researcher 12 16%
Student > Master 8 11%
Student > Ph. D. Student 8 11%
Student > Bachelor 5 7%
Student > Doctoral Student 4 5%
Other 11 15%
Unknown 25 34%
Readers by discipline Count As %
Agricultural and Biological Sciences 25 34%
Environmental Science 6 8%
Biochemistry, Genetics and Molecular Biology 6 8%
Chemistry 3 4%
Medicine and Dentistry 1 1%
Other 1 1%
Unknown 31 42%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 8. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 16 November 2023.
All research outputs
#4,638,917
of 25,365,817 outputs
Outputs from Microbial Ecology
#460
of 2,194 outputs
Outputs of similar age
#83,393
of 339,383 outputs
Outputs of similar age from Microbial Ecology
#19
of 45 outputs
Altmetric has tracked 25,365,817 research outputs across all sources so far. Compared to these this one has done well and is in the 81st percentile: it's in the top 25% of all research outputs ever tracked by Altmetric.
So far Altmetric has tracked 2,194 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 5.3. This one has done well, scoring higher than 78% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 339,383 tracked outputs that were published within six weeks on either side of this one in any source. This one has done well, scoring higher than 75% of its contemporaries.
We're also able to compare this research output to 45 others from the same source and published within six weeks on either side of this one. This one has gotten more attention than average, scoring higher than 60% of its contemporaries.