↓ Skip to main content

YcfDRM is a thermophilic oxygen-dependent ribosomal protein uL16 oxygenase

Overview of attention for article published in Extremophiles, March 2018
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age
  • Average Attention Score compared to outputs of the same age and source

Mentioned by

twitter
4 X users

Citations

dimensions_citation
6 Dimensions

Readers on

mendeley
18 Mendeley
citeulike
2 CiteULike
Title
YcfDRM is a thermophilic oxygen-dependent ribosomal protein uL16 oxygenase
Published in
Extremophiles, March 2018
DOI 10.1007/s00792-018-1016-9
Pubmed ID
Authors

Rok Sekirnik, Sarah E. Wilkins, Jacob Bush, Hanna Tarhonskaya, Martin Münzel, Aayan Hussein, Emily Flashman, Shabaz Mohammed, Michael A. McDonough, Christoph Loenarz, Christopher J. Schofield

Abstract

YcfD from Escherichia coli is a homologue of the human ribosomal oxygenases NO66 and MINA53, which catalyse histidyl-hydroxylation of the 60S subunit and affect cellular proliferation (Ge et al., Nat Chem Biol 12:960-962, 2012). Bioinformatic analysis identified a potential homologue of ycfD in the thermophilic bacterium Rhodothermus marinus (ycfDRM). We describe studies on the characterization of ycfDRM, which is a functional 2OG oxygenase catalysing (2S,3R)-hydroxylation of the ribosomal protein uL16 at R82, and which is active at significantly higher temperatures than previously reported for any other 2OG oxygenase. Recombinant ycfDRM manifests high thermostability (Tm 84 °C) and activity at higher temperatures (Topt 55 °C) than ycfDEC (Tm 50.6 °C, Topt 40 °C). Mass spectrometric studies on purified R. marinus ribosomal proteins demonstrate a temperature-dependent variation in uL16 hydroxylation. Kinetic studies of oxygen dependence suggest that dioxygen availability can be a limiting factor for ycfDRM catalysis at high temperatures, consistent with incomplete uL16 hydroxylation observed in R. marinus cells. Overall, the results that extend the known range of ribosomal hydroxylation, reveal the potential for ycfD-catalysed hydroxylation to be regulated by temperature/dioxygen availability, and that thermophilic 2OG oxygenases are of interest from a biocatalytic perspective.

X Demographics

X Demographics

The data shown below were collected from the profiles of 4 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 18 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 18 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 6 33%
Student > Doctoral Student 2 11%
Researcher 2 11%
Student > Bachelor 1 6%
Professor 1 6%
Other 3 17%
Unknown 3 17%
Readers by discipline Count As %
Chemistry 6 33%
Biochemistry, Genetics and Molecular Biology 5 28%
Agricultural and Biological Sciences 2 11%
Chemical Engineering 2 11%
Unknown 3 17%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 3. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 20 March 2018.
All research outputs
#13,507,266
of 23,026,672 outputs
Outputs from Extremophiles
#478
of 801 outputs
Outputs of similar age
#170,984
of 332,340 outputs
Outputs of similar age from Extremophiles
#8
of 16 outputs
Altmetric has tracked 23,026,672 research outputs across all sources so far. This one is in the 41st percentile – i.e., 41% of other outputs scored the same or lower than it.
So far Altmetric has tracked 801 research outputs from this source. They receive a mean Attention Score of 4.2. This one is in the 39th percentile – i.e., 39% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 332,340 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 48th percentile – i.e., 48% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 16 others from the same source and published within six weeks on either side of this one. This one has gotten more attention than average, scoring higher than 50% of its contemporaries.