↓ Skip to main content

Effect of short-chain fatty acids on the expression of genes involved in short-chain fatty acid transporters and inflammatory response in goat jejunum epithelial cells

Overview of attention for article published in In Vitro Cellular & Developmental Biology - Animal, March 2018
Altmetric Badge

Mentioned by

twitter
1 X user

Citations

dimensions_citation
19 Dimensions

Readers on

mendeley
17 Mendeley
Title
Effect of short-chain fatty acids on the expression of genes involved in short-chain fatty acid transporters and inflammatory response in goat jejunum epithelial cells
Published in
In Vitro Cellular & Developmental Biology - Animal, March 2018
DOI 10.1007/s11626-017-0226-2
Pubmed ID
Authors

Kang Zhan, MaoCheng Jiang, Xiaoxiao Gong, GuoQi Zhao

Abstract

Short-chain fatty acids (SCFAs) produced by microbial fermentation of dietary fibers are utilized by intestinal epithelial cells to provide an energy source for the ruminant. Although the regulation of mRNA expression and inflammatory response involved in SCFAs is established in other animals and tissues, the underlying mechanisms of the inflammatory response by SCFAs in goat jejunum epithelial cells (GJECs) have not been understood. Therefore, the objective of the study is to investigate the underlying mechanisms of the effects of SCFAs on SCFA transporters and inflammatory response in GJECs. These results showed that the acetate, butyrate, and SCFA concentration were markedly reduced in GJECs (p < 0.01). In addition, the propionate concentration was significantly decreased in GJECs (p < 0.05). The mRNA abundance of monocarboxylate transporter 1 (MCT1), MCT4, NHE1, and putative anion transporter 1 (PAT1) was elevated (p < 0.05) by 20 mM SCFAs at pH 7.4 compared with exposure to the pH group. The anion exchanger 2 (AE2) was increased (p < 0.05) by 20 mM SCFAs at pH 6.2. The mRNA abundance of vH+ATPase B subunit (vH+ATPase) was attenuated by SCFAs. For inflammatory responses, IL-1β and TNF-α were increased with SCFAs (p < 0.05). In addition, IκBα involved in NF-κB signaling pathways was disrupted by SCFAs. Consistently, p-p65 signaling molecule was enhanced by adding SCFAs. However, IL-6 was attenuated by adding SCFAs (p < 0.05). Furthermore, p-ErK1/2 mitogen-activated protein kinase (MAPK) signaling pathway was downregulated by adding SCFAs. In conclusion, these novel findings demonstrated that mRNA abundance involved in SCFA absorption is probably associated to SCFAs and pH value, and mechanism of the inflammatory response by SCFAs may be involved in NF-κB and p-ErK1/2 MAPK signaling pathways in GJECs. These pathways may mediate protective inflammation response in GJECs.

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 17 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 17 100%

Demographic breakdown

Readers by professional status Count As %
Researcher 4 24%
Student > Bachelor 3 18%
Lecturer 2 12%
Student > Doctoral Student 1 6%
Student > Master 1 6%
Other 1 6%
Unknown 5 29%
Readers by discipline Count As %
Nursing and Health Professions 3 18%
Agricultural and Biological Sciences 2 12%
Biochemistry, Genetics and Molecular Biology 2 12%
Veterinary Science and Veterinary Medicine 1 6%
Psychology 1 6%
Other 1 6%
Unknown 7 41%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 14 March 2018.
All research outputs
#18,590,133
of 23,026,672 outputs
Outputs from In Vitro Cellular & Developmental Biology - Animal
#583
of 797 outputs
Outputs of similar age
#258,583
of 332,696 outputs
Outputs of similar age from In Vitro Cellular & Developmental Biology - Animal
#4
of 9 outputs
Altmetric has tracked 23,026,672 research outputs across all sources so far. This one is in the 11th percentile – i.e., 11% of other outputs scored the same or lower than it.
So far Altmetric has tracked 797 research outputs from this source. They receive a mean Attention Score of 3.4. This one is in the 16th percentile – i.e., 16% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 332,696 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 11th percentile – i.e., 11% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 9 others from the same source and published within six weeks on either side of this one. This one has scored higher than 5 of them.