↓ Skip to main content

Comparative transcriptome analysis reveals distinct ethylene–independent regulation of ripening in response to low temperature in kiwifruit

Overview of attention for article published in BMC Plant Biology, March 2018
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age
  • Good Attention Score compared to outputs of the same age and source (76th percentile)

Mentioned by

twitter
3 X users

Citations

dimensions_citation
42 Dimensions

Readers on

mendeley
40 Mendeley
Title
Comparative transcriptome analysis reveals distinct ethylene–independent regulation of ripening in response to low temperature in kiwifruit
Published in
BMC Plant Biology, March 2018
DOI 10.1186/s12870-018-1264-y
Pubmed ID
Authors

William O. Asiche, Oscar W. Mitalo, Yuka Kasahara, Yasuaki Tosa, Eric G. Mworia, Willis O. Owino, Koichiro Ushijima, Ryohei Nakano, Kentaro Yano, Yasutaka Kubo

Abstract

Kiwifruit are classified as climacteric since exogenous ethylene (or its analogue propylene) induces rapid ripening accompanied by ethylene production under positive feedback regulation. However, most of the ripening-associated changes (Phase 1 ripening) in kiwifruit during storage and on-vine occur largely in the absence of any detectable ethylene. This ripening behavior is often attributed to basal levels of system I ethylene, although it is suggested to be modulated by low temperature. To elucidate the mechanisms regulating Phase 1 ripening in kiwifruit, a comparative transcriptome analysis using fruit continuously exposed to propylene (at 20 °C), and during storage at 5 °C and 20 °C was conducted. Propylene exposure induced kiwifruit softening, reduction of titratable acidity (TA), increase in soluble solids content (SSC) and ethylene production within 5 days. During storage, softening and reduction of TA occurred faster in fruit at 5 °C compared to 20 °C although no endogenous ethylene production was detected. Transcriptome analysis revealed 3761 ripening-related differentially expressed genes (DEGs), of which 2742 were up-regulated by propylene while 1058 were up-regulated by low temperature. Propylene exclusively up-regulated 2112 DEGs including those associated with ethylene biosynthesis and ripening such as AcACS1, AcACO2, AcPL1, AcXET1, Acβ-GAL, AcAAT, AcERF6 and AcNAC7. Similarly, low temperature exclusively up-regulated 467 DEGS including AcACO3, AcPL2, AcPMEi, AcADH, Acβ-AMY2, AcGA2ox2, AcNAC5 and AcbZIP2 among others. A considerable number of DEGs such as AcPG, AcEXP1, AcXET2, Acβ-AMY1, AcGA2ox1, AcNAC6, AcMADS1 and AcbZIP1 were up-regulated by either propylene or low temperature. Frequent 1-MCP treatments failed to inhibit the accelerated ripening and up-regulation of associated DEGs by low temperature indicating that the changes were independent of ethylene. On-vine kiwifruit ripening proceeded in the absence of any detectable endogenous ethylene production, and coincided with increased expression of low temperature-responsive DEGs as well as the decrease in environmental temperature. These results indicate that kiwifruit possess both ethylene-dependent and low temperature-modulated ripening mechanisms that are distinct and independent of each other. The current work provides a foundation for elaborating the control of these two ripening mechanisms in kiwifruit.

X Demographics

X Demographics

The data shown below were collected from the profiles of 3 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 40 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 40 100%

Demographic breakdown

Readers by professional status Count As %
Student > Master 6 15%
Researcher 6 15%
Student > Ph. D. Student 3 8%
Lecturer 3 8%
Student > Doctoral Student 2 5%
Other 10 25%
Unknown 10 25%
Readers by discipline Count As %
Agricultural and Biological Sciences 18 45%
Psychology 2 5%
Unspecified 1 3%
Pharmacology, Toxicology and Pharmaceutical Science 1 3%
Chemical Engineering 1 3%
Other 4 10%
Unknown 13 33%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 2. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 23 March 2018.
All research outputs
#14,638,545
of 23,881,329 outputs
Outputs from BMC Plant Biology
#1,115
of 3,322 outputs
Outputs of similar age
#185,187
of 334,490 outputs
Outputs of similar age from BMC Plant Biology
#9
of 38 outputs
Altmetric has tracked 23,881,329 research outputs across all sources so far. This one is in the 37th percentile – i.e., 37% of other outputs scored the same or lower than it.
So far Altmetric has tracked 3,322 research outputs from this source. They receive a mean Attention Score of 3.0. This one has gotten more attention than average, scoring higher than 64% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 334,490 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 43rd percentile – i.e., 43% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 38 others from the same source and published within six weeks on either side of this one. This one has done well, scoring higher than 76% of its contemporaries.